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Rice (Oryza sativa L.) signi�cantly contributes to greenhouse gas (GHGs) emissions and environmental 
nitrogen losses. Carbon dioxide emissions reach 36.8 billion tons annually, while methane emissions 
total 580 million tons per year, with 60% from human activities. Rice serves as a fundamental food 
source for 3 billion individuals. Innovative and sustainable management of rice �elds is necessary to 
increase yields. This review explores the potential bene�ts and limitations of rice-animal co-culture 
(CRA). It addresses key questions about the impact of co-culture on farm pro�tability, water quality, 
and GHGs, highlighting its ecological, economic, and social advantages such as increased farm 
productivity, improved resource utilization, enhanced biodiversity, and reduced GHGs. However, 
barriers to adoption include a lack of extension programs and farmer's concerns about drought risks. 
Misuse of the system, such as unbalanced nutrient application can degrade water quality and reduce 
pro�tability. Further research on the e�ects of CRA under di�erent climates and on-�eld conditions is 
essential, and extension programs that require policy and technical support from public and private 
organizations are required to promote widespread adoption. 
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Population growth has led to global challenges such as food 
shortages, nutrient de�ciency, less water and land resources 
availability for agriculture and environmental degradation [1,2]. 
Rice (Oryza sativa L.) serves as a staple food and its production 
covers 155 to 160 million hectares (ha) and feeds 50% of the 
worldwide population plays a key role in meeting global food 
security needs [3]. Each year, about 480 million tons of milled 
rice are produced [4], with China and India alone accounting 
for 50% of rice cultivation and consumption [5]. Economically, 
rice is an important agricultural commodity, a�ecting the 
livelihoods of millions of farmers and an integral part of the 
agri-food system [6]. In 2022, China's rice output will exceed 
208 million tons and becoming the world's largest rice 
cultivator. Ensuring sustainable rice production while 
addressing challenges such as climate change, resource scarcity 
and market volatility is critical to maintaining food security and 
economic stability. But it is a major sector that wastes water and 
emits greenhouse gases (GHGs) [7].

 Aquatic foods, including �sh and other marine life are 
critical to global food security. It is providing essential nutrients 
to billions of people around the world [8]. Since 1961, world 
consumption of aquatic food has increased by an average annual 
rate of 3.0% and reached 20.2 kilograms per capita which is 
more than twice the consumption in the 1960s [9,10]. In 2021, 
approximately 23.8 million tons of aquatic food were lost or 
wasted, accounting for 14.8% of global production [11]. 

Co-culture of rice and aquatic animals (CRA) is a strategy to 
enhance land and water resource utilization and reduce 
environmental pollution [12]. �is review explores the 
advantages and limitations of CRA with focusing on its impact 
on farm pro�tability for environmental and management of 
rice production systems sustainability [13]. Speci�cally, it 
examines the e�ects of CRA on water quality, food yields, 
greenhouse gas emissions, and nitrogen (N) transformations. 
Rice production consumes 90% of Asia’s irrigation water and 
makes it a signi�cant source of resource waste and greenhouse 
gas emissions [14]. 

 Rice cultivation requires huge application of chemical 
fertilizers that can have adverse environmental impacts such 
as N loss GHGs emissions and water pollution [15]. N is a 
macronutrient that contributes to high crop yields and is used 
in 16% of fertilizers used in rice systems globally [12]. Only 
28% is used by rice crops and the rest of fertilizer results in 
runo�, leaching, gas emissions, and soil retention [16]. 
Aquaculture is the cultivation of aquatic organisms such as 
�sh, shell�sh, crabs, and shrimp in marine or freshwater 
systems which is a key component of food security. Rice �elds 
contain large amounts of water that can be used for 
aquaculture such as CRA farming. �e system can provide 
su�cient numbers of aquatic animals for food and control 
problems associated with monoculture aquaculture systems 
through the complementary use of water and land resources. 

 A study conducted to evaluate the viability and economic 
impact of an integrated CRA in Bangladesh found that this 
approach provides greater net positive aspects and lower 
production costs for �sh and rice than rice monoculture 
because yields were higher. Compared to rice monoculture net 
farm income in co-farming systems was 64.4% more in the wet 
season and 98.2% more in the dry season. Furthermore, �sh 
production increases by 600 kg ha per year in shallow inundated 
regions and by 1.5 t ha-1 in deeply inundated regions. 
Co-culture systems generated US 437 ha-1, 20-85% higher than 
monocultures [29,33]. 
 Agricultural sector is the main source of GHGs and 
mainly emits methane (CH4), carbon dioxide (CO2) and 

nitrous oxide (N2O). In CRA, aquatic animals increase 
dissolved oxygen (DO) levels through their movement in the 
water, potentially reducing greenhouse gas emissions [34]. 
Anthropogenic activities in rice systems participate 
approximately 20% of world’s CH4 production [35]. Methane 
emissions from these systems depend on the anaerobic 
degradation of organic matter in underwater conditions with 
a low oxygen supply. Aquatic animals such as crabs and carp 
can a�ect CH4 production by a�ecting soil layers and 
increasing DOC in water and soil. A meta-analysis of 247 
pairwise comparisons demonstrated that CRA signi�cantly 
alleviated CH4 emission by 86.8% and also improved rice 
output by 49.2% in Table 1.

Co-culture systems have the potential to enhance food security 
and improve farmer economies in rural areas, as they provide 
more external feed containing nutrients and minimize 
environmental pollution [17,18]. 
 Ancient China and India initiated the practice of CRA with 
the practice being developed in China around 2000 years ago. It 
has since been adopted by countries such as Vietnam, India, 
Indonesia, Malaysia, Egypt, Philippines and Bangladesh 
[19,20]. In recent decades, CRA has gained attention because of 
its economic returns with surety. Additional aquatic species 
have appeared in co-culture systems, including shrimps, crabs, 
cray�sh, prawns, turtles and duck. �e so�shell turtle has been 
increasingly integrated into CRA in China due to its extensive 
medicinal applications, high protein content, and signi�cant 
economic value. Objectives of the study are to evaluate the 
feasibility and positive aspects of CRA in addressing global food 
security challenges, resource e�ciency, and environmental 
sustainability while assessing their impact on farm pro�tability, 
water quality, and greenhouse gas emissions [21,22].
Agricultural Sustainability
China leads in e�ciently using co-culture systems and 
optimizing resources to achieve high output of rice and aquatic 
life. As early as 1990, China's aquatic animal output from 
740,000 ha of rice �elds was only 130,000 tons. Fast forward to 
2020 and those numbers have ballooned from 2.56 million ha to 
3.25 million tons. It’s not just about quantity; Rice yields are 
consistently 8.7% to 12.1% higher on these water-rich lands 
[23]. Fish, crabs and turtles thrive in the rice �elds, playing their 
part in fending o� pests and promoting nutrient recycling [24]. 
It’s a win-win for the rice and the people who live in the water. A 
research showed that China’s �sh production is relatively high, 
approximately 1.9 to 2.5 t ha-1, followed by Vietnam 2.2 t ha-1, 
India 1.3 to 2.0 t ha-1, Bangladesh 1.08 t ha-1, Indonesia 0.3 to 
0.89 t ha-1 and �ailand 0.9 to 1.1 t ha-1 with rice yield of 9.3 to 
12 t ha-1, 4.2 to 5.7 t ha-1, 3.0 to 4.6 t ha-1, 3.8 to 5.0 t ha-1 and 6.5 
to 7.8 t ha-1 respectively whereas, the co-culture with rice were 
cray�sh, turtle, �sh and crabs in China, �sh in Indonesia, 
Vietnam and �ailand, crabs, shrimps, and �sh in India and 
prawn, shrimps and �sh in Bangladesh. Common �sh species 
were used in this study were Barbodes gonionotus, Oreochromis 
niloticus, Cirrhinus mrigala, Puntius gonionotus, Catla catla and 
Cyprinus carpio [12]. Because of bene�cial results, India and 
Indonesia have launched extension plans for farmers to shi� 
their traditional rice cultivation system to rice and aquatic 
animals co-culture system. CRA has become an important 
aspect of India's organic aquaculture program. Inspired by its 
success and e�ectiveness in Asian countries, African countries 
have adopted similar co-cultural systems [25]. 

Environmental Interactions 
Rice cultivation faces challenges from abiotic and biotic 
stresses, a�ecting yield and quality. Biological challenges 
include bacterial leaf blight, rice blast and bakanae disease. 

Weeds also compete for resources and hinder productivity. 
Abiotic stresses in agriculture pose major challenges to crop 
growth. Drought and high temperatures can reduce yields, 
while �ooding and high soil salinity can hinder water and 
nutrient uptake. Harmful radiation and gaseous pollutants such 
as ozone also impair photosynthesis. Heavy metals in 
contaminated soil further threaten crop growth. �e impact of 
these pressures is staggering [26]. Modeling studies show that 
by 2050, average rice yields could be 17% lower than in 2000. 
�is could lead to food insecurity for an estimated 1.6 billion 
people in Asia and malnutrition for millions of children in 
South and East Asia [27]. 

 Environmental factors in�uencing CRA include water level, 
temperature, transparency, pH, dissolved oxygen, and carbon 
dioxide (DOC). Levels of DOC depend mainly on the 
photosynthesis of organisms and the respiration species in 
CRA. Elevated CO2 and NH3 concentrations pose signi�cant 
risks to farmed animals [25,28]. Rice cultivation considered as 
source of pollutant for water bodies because of nutrients and 
pesticide application. Improvement of paddy water in 
important of rice cultivation. Rice mono-cultivation utilize only 
the required N and rest is lost on environment [12]. On other 
hands, rice-aquatic life co-culture trend enhances N use 
e�ciency for plants and reduce its losses because of aquatic life. 
By improving the organic carbon, P, N, and K this so-culture 
enhance soil fertility and production sustainability. Previous 
researches reported that this co-culture reduces the fertilizers 
use up-to 26% as compare to mono-cultured rice farming. 
Moreover, reduced nutrients (N and P) concentration in 
co-culture was reduced up-to 79% than mono-cultured �sh 
farming. Co-culture system minimized the pesticide use up-to 
68% [12,29,30]. 

 Recommended conditions (Figure 1) for CRA are designed 
to support the growth and health of rice (culture period of 
90-120 days) and aquatic organisms. Keeping carbon dioxide 
levels below 10 ppm prevents acidic conditions, while dissolved 
oxygen levels between 5.0-7.5 ppm ensure adequate respiration 
for aquatic life. A water level of 30-90 cm provides optimal 
submergence space for rice and optimal habitat space for 
aquatic organisms with a pH range (neutral to alkaline) from 
6.5 to 9.0 supports nutrient availability and safety for plants and 
animals. Water clarity of 25-30 cm provides su�cient light for 
photosynthesis while maintaining a healthy ecosystem balance, 
and a temperature range of 25-35°C, and ionized ammonia 
promotes optimal growth and development of rice and tropical 
aquatic life [28]. Designs recommendations provided by various 
researches are rice ridge and �sh ditch farming system in China, 
peripheral trench, latticed trenches, Y-shaped trench, diagonal 
trench, peripheral with one central longitudinal trench, 
peripheral with two equidistant transverse trenches and design 
and construction of Indonesian rice + �sh farm with lateral 
pond [19,31,32].

only improve productivity but also enhance the adaptability ratio 
for climate change and upstream dam impacts [41].

 CRA involves bene�cial interactions between organisms to 
improve water use e�ciency. Rice provides shade and lowers 
water temperatures, bene�ting aquatic animals. Animal 
movement bene�ts soil quality and nutrient availability, while 
also controlling pests and reducing the need for pesticides 
[42,43]. However, year-round �ooding can lead to reduced soil 
fertility and other negative changes in soil properties. CRA is an 

e�cient and sustainable way to utilize nutrients. Excess N in 
rice is absorbed by aquatic animals such as �sh, crabs, and 
shrimps, preventing runo� during the rainy season. �e animal 
waste then becomes nutrients for the rice, thus accelerating the 
nutrient cycle. In addition, �sh that consume the remaining N 
from rice �elds can be sold in the market, thereby improving the 
socioeconomic status of rural communities. In Bangladesh, 
CRA is now basic part of green economy and integrated 
management of land, water and aquatic resources [12,42].

[44,45]. �is price premium is attributed to the ecological 
bene�t of �sh consuming weeds and insects, which reduces the 
need for pesticides and herbicides, thereby improving food 
security [33].

 Using the cray�sh in CRA, the cost of synthetic fertilizers 
and chemical pesticides was reduced by 79.5% and 50.0% 
respectively compared with rice monoculture, while the net 
ecosystem economic budget (NB) increased by 26.90-75.60%. 
In addition, the rice-crab co-culture system signi�cantly 
improved NB, and the positive aspects of bigeye crabs and 
juvenile crabs far exceeded that of rice monoculture. Overall, 
the net income of co-culture systems can be 115% higher than 
that of �sh monoculture, demonstrating signi�cant economic 
and ecological bene�ts [12,46].

Limitations and Challenges
�e adoption of CRA is hindered by factors such as technical 
pro�ciency, risks associated with �oods and droughts, and the 
need for integrated management. Lack of technical knowledge, 
�nancial support and poor management are signi�cant 
limitations. Excessive use of chemical fertilizers and pesticides 
a�ects habitats and aquatic animal production. Expanding 
co-culture areas without considering market demand may 
result in reduced product value and price. Challenges include 
environmental contamination, excessive competition between 
organisms, and economic losses due to installation costs and 
predator attacks. �e study also points to the need for better 
training of farmers and incentives to adopt CRA instead of rice 
monoculture.

Conclusions
Rice cultivation relies majorly on chemical fertilizers, especially 
nitrogen fertilizers, to ensure food security. Farming aquatic 
animals alongside rice can bring economic, ecological and 
social advantages. But challenges such as lack of technical 
knowledge and poor management hinder widespread adoption.  
�e review concludes that CRA o�er several advantages over 
monoculture systems and can increase agricultural yields, 
incomes and land/water use. However, its e�ects on water 
quality and greenhouse gas emissions are uncertain and may 
vary depending on climate and site conditions. Co-culture can 
reduce greenhouse gas emissions and improve water quality, but 
may also lead to increased greenhouse gas emissions. 
Addressing vulnerabilities to climate change, such as droughts 
and �oods needs a strong policy roadmap. 

 Modulating the intensity and extent of co-culture is critical 
to maintaining product quality and price while controlling 
eutrophication and feed application at scale. Optimization of 
CRA requires further workshops, technical training and 
problem-solving e�orts. Persistent management and business 
plans, public-private partnerships and technical support are 
critical. Further research is required to understand the impact 
of CRA on GHGs, water quality, and biodiversity. Scienti�c 
investigations should focus on feed quantity and quality, 
climatic e�ects, system optimization and the suitability of 
co-culture under various conditions. �e environmental and 
ecological e�ects of CRA require further research to understand 
its impact. Key issues include studying its impact on the 
ecology, soil and water environment, improving feeding 
methods, and identifying suitable rice varieties to provide 

farmers with technical knowledge and the use of spatially 
accurate measurement techniques to study greenhouse gas 
emissions and climate change are critical. Other developing 
countries are advised to learn from China’s approach to 
overcoming initial investment challenges in rural communities 
through educational activities and supportive policies.
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Population growth has led to global challenges such as food 
shortages, nutrient de�ciency, less water and land resources 
availability for agriculture and environmental degradation [1,2]. 
Rice (Oryza sativa L.) serves as a staple food and its production 
covers 155 to 160 million hectares (ha) and feeds 50% of the 
worldwide population plays a key role in meeting global food 
security needs [3]. Each year, about 480 million tons of milled 
rice are produced [4], with China and India alone accounting 
for 50% of rice cultivation and consumption [5]. Economically, 
rice is an important agricultural commodity, a�ecting the 
livelihoods of millions of farmers and an integral part of the 
agri-food system [6]. In 2022, China's rice output will exceed 
208 million tons and becoming the world's largest rice 
cultivator. Ensuring sustainable rice production while 
addressing challenges such as climate change, resource scarcity 
and market volatility is critical to maintaining food security and 
economic stability. But it is a major sector that wastes water and 
emits greenhouse gases (GHGs) [7].

 Aquatic foods, including �sh and other marine life are 
critical to global food security. It is providing essential nutrients 
to billions of people around the world [8]. Since 1961, world 
consumption of aquatic food has increased by an average annual 
rate of 3.0% and reached 20.2 kilograms per capita which is 
more than twice the consumption in the 1960s [9,10]. In 2021, 
approximately 23.8 million tons of aquatic food were lost or 
wasted, accounting for 14.8% of global production [11]. 

Co-culture of rice and aquatic animals (CRA) is a strategy to 
enhance land and water resource utilization and reduce 
environmental pollution [12]. �is review explores the 
advantages and limitations of CRA with focusing on its impact 
on farm pro�tability for environmental and management of 
rice production systems sustainability [13]. Speci�cally, it 
examines the e�ects of CRA on water quality, food yields, 
greenhouse gas emissions, and nitrogen (N) transformations. 
Rice production consumes 90% of Asia’s irrigation water and 
makes it a signi�cant source of resource waste and greenhouse 
gas emissions [14]. 

 Rice cultivation requires huge application of chemical 
fertilizers that can have adverse environmental impacts such 
as N loss GHGs emissions and water pollution [15]. N is a 
macronutrient that contributes to high crop yields and is used 
in 16% of fertilizers used in rice systems globally [12]. Only 
28% is used by rice crops and the rest of fertilizer results in 
runo�, leaching, gas emissions, and soil retention [16]. 
Aquaculture is the cultivation of aquatic organisms such as 
�sh, shell�sh, crabs, and shrimp in marine or freshwater 
systems which is a key component of food security. Rice �elds 
contain large amounts of water that can be used for 
aquaculture such as CRA farming. �e system can provide 
su�cient numbers of aquatic animals for food and control 
problems associated with monoculture aquaculture systems 
through the complementary use of water and land resources. 

 A study conducted to evaluate the viability and economic 
impact of an integrated CRA in Bangladesh found that this 
approach provides greater net positive aspects and lower 
production costs for �sh and rice than rice monoculture 
because yields were higher. Compared to rice monoculture net 
farm income in co-farming systems was 64.4% more in the wet 
season and 98.2% more in the dry season. Furthermore, �sh 
production increases by 600 kg ha per year in shallow inundated 
regions and by 1.5 t ha-1 in deeply inundated regions. 
Co-culture systems generated US 437 ha-1, 20-85% higher than 
monocultures [29,33]. 
 Agricultural sector is the main source of GHGs and 
mainly emits methane (CH4), carbon dioxide (CO2) and 

nitrous oxide (N2O). In CRA, aquatic animals increase 
dissolved oxygen (DO) levels through their movement in the 
water, potentially reducing greenhouse gas emissions [34]. 
Anthropogenic activities in rice systems participate 
approximately 20% of world’s CH4 production [35]. Methane 
emissions from these systems depend on the anaerobic 
degradation of organic matter in underwater conditions with 
a low oxygen supply. Aquatic animals such as crabs and carp 
can a�ect CH4 production by a�ecting soil layers and 
increasing DOC in water and soil. A meta-analysis of 247 
pairwise comparisons demonstrated that CRA signi�cantly 
alleviated CH4 emission by 86.8% and also improved rice 
output by 49.2% in Table 1.

Co-culture systems have the potential to enhance food security 
and improve farmer economies in rural areas, as they provide 
more external feed containing nutrients and minimize 
environmental pollution [17,18]. 
 Ancient China and India initiated the practice of CRA with 
the practice being developed in China around 2000 years ago. It 
has since been adopted by countries such as Vietnam, India, 
Indonesia, Malaysia, Egypt, Philippines and Bangladesh 
[19,20]. In recent decades, CRA has gained attention because of 
its economic returns with surety. Additional aquatic species 
have appeared in co-culture systems, including shrimps, crabs, 
cray�sh, prawns, turtles and duck. �e so�shell turtle has been 
increasingly integrated into CRA in China due to its extensive 
medicinal applications, high protein content, and signi�cant 
economic value. Objectives of the study are to evaluate the 
feasibility and positive aspects of CRA in addressing global food 
security challenges, resource e�ciency, and environmental 
sustainability while assessing their impact on farm pro�tability, 
water quality, and greenhouse gas emissions [21,22].
Agricultural Sustainability
China leads in e�ciently using co-culture systems and 
optimizing resources to achieve high output of rice and aquatic 
life. As early as 1990, China's aquatic animal output from 
740,000 ha of rice �elds was only 130,000 tons. Fast forward to 
2020 and those numbers have ballooned from 2.56 million ha to 
3.25 million tons. It’s not just about quantity; Rice yields are 
consistently 8.7% to 12.1% higher on these water-rich lands 
[23]. Fish, crabs and turtles thrive in the rice �elds, playing their 
part in fending o� pests and promoting nutrient recycling [24]. 
It’s a win-win for the rice and the people who live in the water. A 
research showed that China’s �sh production is relatively high, 
approximately 1.9 to 2.5 t ha-1, followed by Vietnam 2.2 t ha-1, 
India 1.3 to 2.0 t ha-1, Bangladesh 1.08 t ha-1, Indonesia 0.3 to 
0.89 t ha-1 and �ailand 0.9 to 1.1 t ha-1 with rice yield of 9.3 to 
12 t ha-1, 4.2 to 5.7 t ha-1, 3.0 to 4.6 t ha-1, 3.8 to 5.0 t ha-1 and 6.5 
to 7.8 t ha-1 respectively whereas, the co-culture with rice were 
cray�sh, turtle, �sh and crabs in China, �sh in Indonesia, 
Vietnam and �ailand, crabs, shrimps, and �sh in India and 
prawn, shrimps and �sh in Bangladesh. Common �sh species 
were used in this study were Barbodes gonionotus, Oreochromis 
niloticus, Cirrhinus mrigala, Puntius gonionotus, Catla catla and 
Cyprinus carpio [12]. Because of bene�cial results, India and 
Indonesia have launched extension plans for farmers to shi� 
their traditional rice cultivation system to rice and aquatic 
animals co-culture system. CRA has become an important 
aspect of India's organic aquaculture program. Inspired by its 
success and e�ectiveness in Asian countries, African countries 
have adopted similar co-cultural systems [25]. 

Environmental Interactions 
Rice cultivation faces challenges from abiotic and biotic 
stresses, a�ecting yield and quality. Biological challenges 
include bacterial leaf blight, rice blast and bakanae disease. 

Weeds also compete for resources and hinder productivity. 
Abiotic stresses in agriculture pose major challenges to crop 
growth. Drought and high temperatures can reduce yields, 
while �ooding and high soil salinity can hinder water and 
nutrient uptake. Harmful radiation and gaseous pollutants such 
as ozone also impair photosynthesis. Heavy metals in 
contaminated soil further threaten crop growth. �e impact of 
these pressures is staggering [26]. Modeling studies show that 
by 2050, average rice yields could be 17% lower than in 2000. 
�is could lead to food insecurity for an estimated 1.6 billion 
people in Asia and malnutrition for millions of children in 
South and East Asia [27]. 

 Environmental factors in�uencing CRA include water level, 
temperature, transparency, pH, dissolved oxygen, and carbon 
dioxide (DOC). Levels of DOC depend mainly on the 
photosynthesis of organisms and the respiration species in 
CRA. Elevated CO2 and NH3 concentrations pose signi�cant 
risks to farmed animals [25,28]. Rice cultivation considered as 
source of pollutant for water bodies because of nutrients and 
pesticide application. Improvement of paddy water in 
important of rice cultivation. Rice mono-cultivation utilize only 
the required N and rest is lost on environment [12]. On other 
hands, rice-aquatic life co-culture trend enhances N use 
e�ciency for plants and reduce its losses because of aquatic life. 
By improving the organic carbon, P, N, and K this so-culture 
enhance soil fertility and production sustainability. Previous 
researches reported that this co-culture reduces the fertilizers 
use up-to 26% as compare to mono-cultured rice farming. 
Moreover, reduced nutrients (N and P) concentration in 
co-culture was reduced up-to 79% than mono-cultured �sh 
farming. Co-culture system minimized the pesticide use up-to 
68% [12,29,30]. 

 Recommended conditions (Figure 1) for CRA are designed 
to support the growth and health of rice (culture period of 
90-120 days) and aquatic organisms. Keeping carbon dioxide 
levels below 10 ppm prevents acidic conditions, while dissolved 
oxygen levels between 5.0-7.5 ppm ensure adequate respiration 
for aquatic life. A water level of 30-90 cm provides optimal 
submergence space for rice and optimal habitat space for 
aquatic organisms with a pH range (neutral to alkaline) from 
6.5 to 9.0 supports nutrient availability and safety for plants and 
animals. Water clarity of 25-30 cm provides su�cient light for 
photosynthesis while maintaining a healthy ecosystem balance, 
and a temperature range of 25-35°C, and ionized ammonia 
promotes optimal growth and development of rice and tropical 
aquatic life [28]. Designs recommendations provided by various 
researches are rice ridge and �sh ditch farming system in China, 
peripheral trench, latticed trenches, Y-shaped trench, diagonal 
trench, peripheral with one central longitudinal trench, 
peripheral with two equidistant transverse trenches and design 
and construction of Indonesian rice + �sh farm with lateral 
pond [19,31,32].

only improve productivity but also enhance the adaptability ratio 
for climate change and upstream dam impacts [41].

 CRA involves bene�cial interactions between organisms to 
improve water use e�ciency. Rice provides shade and lowers 
water temperatures, bene�ting aquatic animals. Animal 
movement bene�ts soil quality and nutrient availability, while 
also controlling pests and reducing the need for pesticides 
[42,43]. However, year-round �ooding can lead to reduced soil 
fertility and other negative changes in soil properties. CRA is an 

e�cient and sustainable way to utilize nutrients. Excess N in 
rice is absorbed by aquatic animals such as �sh, crabs, and 
shrimps, preventing runo� during the rainy season. �e animal 
waste then becomes nutrients for the rice, thus accelerating the 
nutrient cycle. In addition, �sh that consume the remaining N 
from rice �elds can be sold in the market, thereby improving the 
socioeconomic status of rural communities. In Bangladesh, 
CRA is now basic part of green economy and integrated 
management of land, water and aquatic resources [12,42].

[44,45]. �is price premium is attributed to the ecological 
bene�t of �sh consuming weeds and insects, which reduces the 
need for pesticides and herbicides, thereby improving food 
security [33].

 Using the cray�sh in CRA, the cost of synthetic fertilizers 
and chemical pesticides was reduced by 79.5% and 50.0% 
respectively compared with rice monoculture, while the net 
ecosystem economic budget (NB) increased by 26.90-75.60%. 
In addition, the rice-crab co-culture system signi�cantly 
improved NB, and the positive aspects of bigeye crabs and 
juvenile crabs far exceeded that of rice monoculture. Overall, 
the net income of co-culture systems can be 115% higher than 
that of �sh monoculture, demonstrating signi�cant economic 
and ecological bene�ts [12,46].

Limitations and Challenges
�e adoption of CRA is hindered by factors such as technical 
pro�ciency, risks associated with �oods and droughts, and the 
need for integrated management. Lack of technical knowledge, 
�nancial support and poor management are signi�cant 
limitations. Excessive use of chemical fertilizers and pesticides 
a�ects habitats and aquatic animal production. Expanding 
co-culture areas without considering market demand may 
result in reduced product value and price. Challenges include 
environmental contamination, excessive competition between 
organisms, and economic losses due to installation costs and 
predator attacks. �e study also points to the need for better 
training of farmers and incentives to adopt CRA instead of rice 
monoculture.

Conclusions
Rice cultivation relies majorly on chemical fertilizers, especially 
nitrogen fertilizers, to ensure food security. Farming aquatic 
animals alongside rice can bring economic, ecological and 
social advantages. But challenges such as lack of technical 
knowledge and poor management hinder widespread adoption.  
�e review concludes that CRA o�er several advantages over 
monoculture systems and can increase agricultural yields, 
incomes and land/water use. However, its e�ects on water 
quality and greenhouse gas emissions are uncertain and may 
vary depending on climate and site conditions. Co-culture can 
reduce greenhouse gas emissions and improve water quality, but 
may also lead to increased greenhouse gas emissions. 
Addressing vulnerabilities to climate change, such as droughts 
and �oods needs a strong policy roadmap. 

 Modulating the intensity and extent of co-culture is critical 
to maintaining product quality and price while controlling 
eutrophication and feed application at scale. Optimization of 
CRA requires further workshops, technical training and 
problem-solving e�orts. Persistent management and business 
plans, public-private partnerships and technical support are 
critical. Further research is required to understand the impact 
of CRA on GHGs, water quality, and biodiversity. Scienti�c 
investigations should focus on feed quantity and quality, 
climatic e�ects, system optimization and the suitability of 
co-culture under various conditions. �e environmental and 
ecological e�ects of CRA require further research to understand 
its impact. Key issues include studying its impact on the 
ecology, soil and water environment, improving feeding 
methods, and identifying suitable rice varieties to provide 

farmers with technical knowledge and the use of spatially 
accurate measurement techniques to study greenhouse gas 
emissions and climate change are critical. Other developing 
countries are advised to learn from China’s approach to 
overcoming initial investment challenges in rural communities 
through educational activities and supportive policies.
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Figure 1. Optimum conditions required for co-culture of rice and aquatic organisms.

 CRA has been found to reduce methane emissions and the 
potential for global warming. CRA was observed to decrease the 
global warming potential by 12.9% and GHGs intensity 4.9% 
[39]. Additionally, CRA emphasizes the in�uence of microbial 
behavior, drainage, and has no signi�cant e�ects on N2O 
emission relative to rice monoculture. Conversion from 
traditional rice monoculture to CRA involving �sh, crab, 
cray�sh, and duck has been shown to signi�cantly reduce N2O 
emissions and improve N use e�ciency. CRA o�er many 
positive aspects to farmers and others including ecological, 
economic and social advantages. CRA can improve �eld water 
ecology, increase sources of organic fertilizer, and change the 
carbon-nitrogen ratio. But it may also lead to resource 
competition and water pollution downstream [33,34].

Ecological Benefits
CRA provide a variety of bene�ts to farmers and others, 
including ecological, economic, and social advantages. CRA 
improves �eld water ecology, provide organic fertilizer, and 
thereby increase the carbon-nitrogen ratio [22]. However, there 
are concerns about possible water contamination from aquatic 
animal waste and excess feed [40]. �e ecological positive 
aspects of CRA are mainly related to resource and nutrient 

utilization and biodiversity (Figure 2). Biodiversity is 
threatened by environmental pressures and human activities in 
aquatic ecosystems. CRA maintain biodiversity and support a 
variety of aquatic �ora and fauna. Researches show that these 
co-culture systems have no negative impact on �sh abundance 
and aquatic biodiversity [39,40]. �e adoption of CRA can 
enhance biodiversity and enable resilient and productive 
agriculture. CRA is a complex integrated system with direct and 
indirect interactions between organisms. �e system improves 
water utilization e�ciency by providing shade, soil loosening, 
and pest control for aquatic animals. Year-round �ooding 
conditions can reduce soil fertility and alter soil properties [21]. 

 Co-culture also promotes a dynamic nutrient cycle. Excess N 
in the rice �elds is absorbed by aquatic animals and their 
excrement becomes nutrients for the rice plants and utilizing 
excess N for �sh production can help improve the socioeconomic 
status of rural communities [20]. CRA has gained global 
attention since the 1970s with many governments promoting the 
adoption of this technology through technical support and tax 
incentives. With the world's largest cultivated land area, China 
encourages farmers to shi� to intensive CRA to enhance 
agricultural productivity. �ese enhanced co-culture systems not 

Socioeconomics Benefits
CRA is an important strategy for farmers to optimize resource 
utilization and improve socioeconomic status. Since 1970, this 
system has attracted global attention, especially in China, where 
the government has taken measures to support farmers in 
transitioning to precision farming. �is shi� to cultivated rice is 

intended to increase productivity, increase farm income and 
increase resilience to climate change and the impact of 
upstream dams. Integrated rice farming has signi�cant 
advantages. In CRA system the �sh production has also 
increased signi�cantly, reaching 600 kg ha-1 ya-1 [12]. �e 
market price of rice is as high as US$1.52 kg-1, while the market 
price of traditional monoculture rice is US$0.61-0.91 kg-1 
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Population growth has led to global challenges such as food 
shortages, nutrient de�ciency, less water and land resources 
availability for agriculture and environmental degradation [1,2]. 
Rice (Oryza sativa L.) serves as a staple food and its production 
covers 155 to 160 million hectares (ha) and feeds 50% of the 
worldwide population plays a key role in meeting global food 
security needs [3]. Each year, about 480 million tons of milled 
rice are produced [4], with China and India alone accounting 
for 50% of rice cultivation and consumption [5]. Economically, 
rice is an important agricultural commodity, a�ecting the 
livelihoods of millions of farmers and an integral part of the 
agri-food system [6]. In 2022, China's rice output will exceed 
208 million tons and becoming the world's largest rice 
cultivator. Ensuring sustainable rice production while 
addressing challenges such as climate change, resource scarcity 
and market volatility is critical to maintaining food security and 
economic stability. But it is a major sector that wastes water and 
emits greenhouse gases (GHGs) [7].

 Aquatic foods, including �sh and other marine life are 
critical to global food security. It is providing essential nutrients 
to billions of people around the world [8]. Since 1961, world 
consumption of aquatic food has increased by an average annual 
rate of 3.0% and reached 20.2 kilograms per capita which is 
more than twice the consumption in the 1960s [9,10]. In 2021, 
approximately 23.8 million tons of aquatic food were lost or 
wasted, accounting for 14.8% of global production [11]. 

Co-culture of rice and aquatic animals (CRA) is a strategy to 
enhance land and water resource utilization and reduce 
environmental pollution [12]. �is review explores the 
advantages and limitations of CRA with focusing on its impact 
on farm pro�tability for environmental and management of 
rice production systems sustainability [13]. Speci�cally, it 
examines the e�ects of CRA on water quality, food yields, 
greenhouse gas emissions, and nitrogen (N) transformations. 
Rice production consumes 90% of Asia’s irrigation water and 
makes it a signi�cant source of resource waste and greenhouse 
gas emissions [14]. 

 Rice cultivation requires huge application of chemical 
fertilizers that can have adverse environmental impacts such 
as N loss GHGs emissions and water pollution [15]. N is a 
macronutrient that contributes to high crop yields and is used 
in 16% of fertilizers used in rice systems globally [12]. Only 
28% is used by rice crops and the rest of fertilizer results in 
runo�, leaching, gas emissions, and soil retention [16]. 
Aquaculture is the cultivation of aquatic organisms such as 
�sh, shell�sh, crabs, and shrimp in marine or freshwater 
systems which is a key component of food security. Rice �elds 
contain large amounts of water that can be used for 
aquaculture such as CRA farming. �e system can provide 
su�cient numbers of aquatic animals for food and control 
problems associated with monoculture aquaculture systems 
through the complementary use of water and land resources. 

 A study conducted to evaluate the viability and economic 
impact of an integrated CRA in Bangladesh found that this 
approach provides greater net positive aspects and lower 
production costs for �sh and rice than rice monoculture 
because yields were higher. Compared to rice monoculture net 
farm income in co-farming systems was 64.4% more in the wet 
season and 98.2% more in the dry season. Furthermore, �sh 
production increases by 600 kg ha per year in shallow inundated 
regions and by 1.5 t ha-1 in deeply inundated regions. 
Co-culture systems generated US 437 ha-1, 20-85% higher than 
monocultures [29,33]. 
 Agricultural sector is the main source of GHGs and 
mainly emits methane (CH4), carbon dioxide (CO2) and 

nitrous oxide (N2O). In CRA, aquatic animals increase 
dissolved oxygen (DO) levels through their movement in the 
water, potentially reducing greenhouse gas emissions [34]. 
Anthropogenic activities in rice systems participate 
approximately 20% of world’s CH4 production [35]. Methane 
emissions from these systems depend on the anaerobic 
degradation of organic matter in underwater conditions with 
a low oxygen supply. Aquatic animals such as crabs and carp 
can a�ect CH4 production by a�ecting soil layers and 
increasing DOC in water and soil. A meta-analysis of 247 
pairwise comparisons demonstrated that CRA signi�cantly 
alleviated CH4 emission by 86.8% and also improved rice 
output by 49.2% in Table 1.

Co-culture systems have the potential to enhance food security 
and improve farmer economies in rural areas, as they provide 
more external feed containing nutrients and minimize 
environmental pollution [17,18]. 
 Ancient China and India initiated the practice of CRA with 
the practice being developed in China around 2000 years ago. It 
has since been adopted by countries such as Vietnam, India, 
Indonesia, Malaysia, Egypt, Philippines and Bangladesh 
[19,20]. In recent decades, CRA has gained attention because of 
its economic returns with surety. Additional aquatic species 
have appeared in co-culture systems, including shrimps, crabs, 
cray�sh, prawns, turtles and duck. �e so�shell turtle has been 
increasingly integrated into CRA in China due to its extensive 
medicinal applications, high protein content, and signi�cant 
economic value. Objectives of the study are to evaluate the 
feasibility and positive aspects of CRA in addressing global food 
security challenges, resource e�ciency, and environmental 
sustainability while assessing their impact on farm pro�tability, 
water quality, and greenhouse gas emissions [21,22].
Agricultural Sustainability
China leads in e�ciently using co-culture systems and 
optimizing resources to achieve high output of rice and aquatic 
life. As early as 1990, China's aquatic animal output from 
740,000 ha of rice �elds was only 130,000 tons. Fast forward to 
2020 and those numbers have ballooned from 2.56 million ha to 
3.25 million tons. It’s not just about quantity; Rice yields are 
consistently 8.7% to 12.1% higher on these water-rich lands 
[23]. Fish, crabs and turtles thrive in the rice �elds, playing their 
part in fending o� pests and promoting nutrient recycling [24]. 
It’s a win-win for the rice and the people who live in the water. A 
research showed that China’s �sh production is relatively high, 
approximately 1.9 to 2.5 t ha-1, followed by Vietnam 2.2 t ha-1, 
India 1.3 to 2.0 t ha-1, Bangladesh 1.08 t ha-1, Indonesia 0.3 to 
0.89 t ha-1 and �ailand 0.9 to 1.1 t ha-1 with rice yield of 9.3 to 
12 t ha-1, 4.2 to 5.7 t ha-1, 3.0 to 4.6 t ha-1, 3.8 to 5.0 t ha-1 and 6.5 
to 7.8 t ha-1 respectively whereas, the co-culture with rice were 
cray�sh, turtle, �sh and crabs in China, �sh in Indonesia, 
Vietnam and �ailand, crabs, shrimps, and �sh in India and 
prawn, shrimps and �sh in Bangladesh. Common �sh species 
were used in this study were Barbodes gonionotus, Oreochromis 
niloticus, Cirrhinus mrigala, Puntius gonionotus, Catla catla and 
Cyprinus carpio [12]. Because of bene�cial results, India and 
Indonesia have launched extension plans for farmers to shi� 
their traditional rice cultivation system to rice and aquatic 
animals co-culture system. CRA has become an important 
aspect of India's organic aquaculture program. Inspired by its 
success and e�ectiveness in Asian countries, African countries 
have adopted similar co-cultural systems [25]. 

Environmental Interactions 
Rice cultivation faces challenges from abiotic and biotic 
stresses, a�ecting yield and quality. Biological challenges 
include bacterial leaf blight, rice blast and bakanae disease. 

Weeds also compete for resources and hinder productivity. 
Abiotic stresses in agriculture pose major challenges to crop 
growth. Drought and high temperatures can reduce yields, 
while �ooding and high soil salinity can hinder water and 
nutrient uptake. Harmful radiation and gaseous pollutants such 
as ozone also impair photosynthesis. Heavy metals in 
contaminated soil further threaten crop growth. �e impact of 
these pressures is staggering [26]. Modeling studies show that 
by 2050, average rice yields could be 17% lower than in 2000. 
�is could lead to food insecurity for an estimated 1.6 billion 
people in Asia and malnutrition for millions of children in 
South and East Asia [27]. 

 Environmental factors in�uencing CRA include water level, 
temperature, transparency, pH, dissolved oxygen, and carbon 
dioxide (DOC). Levels of DOC depend mainly on the 
photosynthesis of organisms and the respiration species in 
CRA. Elevated CO2 and NH3 concentrations pose signi�cant 
risks to farmed animals [25,28]. Rice cultivation considered as 
source of pollutant for water bodies because of nutrients and 
pesticide application. Improvement of paddy water in 
important of rice cultivation. Rice mono-cultivation utilize only 
the required N and rest is lost on environment [12]. On other 
hands, rice-aquatic life co-culture trend enhances N use 
e�ciency for plants and reduce its losses because of aquatic life. 
By improving the organic carbon, P, N, and K this so-culture 
enhance soil fertility and production sustainability. Previous 
researches reported that this co-culture reduces the fertilizers 
use up-to 26% as compare to mono-cultured rice farming. 
Moreover, reduced nutrients (N and P) concentration in 
co-culture was reduced up-to 79% than mono-cultured �sh 
farming. Co-culture system minimized the pesticide use up-to 
68% [12,29,30]. 

 Recommended conditions (Figure 1) for CRA are designed 
to support the growth and health of rice (culture period of 
90-120 days) and aquatic organisms. Keeping carbon dioxide 
levels below 10 ppm prevents acidic conditions, while dissolved 
oxygen levels between 5.0-7.5 ppm ensure adequate respiration 
for aquatic life. A water level of 30-90 cm provides optimal 
submergence space for rice and optimal habitat space for 
aquatic organisms with a pH range (neutral to alkaline) from 
6.5 to 9.0 supports nutrient availability and safety for plants and 
animals. Water clarity of 25-30 cm provides su�cient light for 
photosynthesis while maintaining a healthy ecosystem balance, 
and a temperature range of 25-35°C, and ionized ammonia 
promotes optimal growth and development of rice and tropical 
aquatic life [28]. Designs recommendations provided by various 
researches are rice ridge and �sh ditch farming system in China, 
peripheral trench, latticed trenches, Y-shaped trench, diagonal 
trench, peripheral with one central longitudinal trench, 
peripheral with two equidistant transverse trenches and design 
and construction of Indonesian rice + �sh farm with lateral 
pond [19,31,32].

only improve productivity but also enhance the adaptability ratio 
for climate change and upstream dam impacts [41].

 CRA involves bene�cial interactions between organisms to 
improve water use e�ciency. Rice provides shade and lowers 
water temperatures, bene�ting aquatic animals. Animal 
movement bene�ts soil quality and nutrient availability, while 
also controlling pests and reducing the need for pesticides 
[42,43]. However, year-round �ooding can lead to reduced soil 
fertility and other negative changes in soil properties. CRA is an 

e�cient and sustainable way to utilize nutrients. Excess N in 
rice is absorbed by aquatic animals such as �sh, crabs, and 
shrimps, preventing runo� during the rainy season. �e animal 
waste then becomes nutrients for the rice, thus accelerating the 
nutrient cycle. In addition, �sh that consume the remaining N 
from rice �elds can be sold in the market, thereby improving the 
socioeconomic status of rural communities. In Bangladesh, 
CRA is now basic part of green economy and integrated 
management of land, water and aquatic resources [12,42].

[44,45]. �is price premium is attributed to the ecological 
bene�t of �sh consuming weeds and insects, which reduces the 
need for pesticides and herbicides, thereby improving food 
security [33].

 Using the cray�sh in CRA, the cost of synthetic fertilizers 
and chemical pesticides was reduced by 79.5% and 50.0% 
respectively compared with rice monoculture, while the net 
ecosystem economic budget (NB) increased by 26.90-75.60%. 
In addition, the rice-crab co-culture system signi�cantly 
improved NB, and the positive aspects of bigeye crabs and 
juvenile crabs far exceeded that of rice monoculture. Overall, 
the net income of co-culture systems can be 115% higher than 
that of �sh monoculture, demonstrating signi�cant economic 
and ecological bene�ts [12,46].

Limitations and Challenges
�e adoption of CRA is hindered by factors such as technical 
pro�ciency, risks associated with �oods and droughts, and the 
need for integrated management. Lack of technical knowledge, 
�nancial support and poor management are signi�cant 
limitations. Excessive use of chemical fertilizers and pesticides 
a�ects habitats and aquatic animal production. Expanding 
co-culture areas without considering market demand may 
result in reduced product value and price. Challenges include 
environmental contamination, excessive competition between 
organisms, and economic losses due to installation costs and 
predator attacks. �e study also points to the need for better 
training of farmers and incentives to adopt CRA instead of rice 
monoculture.

Conclusions
Rice cultivation relies majorly on chemical fertilizers, especially 
nitrogen fertilizers, to ensure food security. Farming aquatic 
animals alongside rice can bring economic, ecological and 
social advantages. But challenges such as lack of technical 
knowledge and poor management hinder widespread adoption.  
�e review concludes that CRA o�er several advantages over 
monoculture systems and can increase agricultural yields, 
incomes and land/water use. However, its e�ects on water 
quality and greenhouse gas emissions are uncertain and may 
vary depending on climate and site conditions. Co-culture can 
reduce greenhouse gas emissions and improve water quality, but 
may also lead to increased greenhouse gas emissions. 
Addressing vulnerabilities to climate change, such as droughts 
and �oods needs a strong policy roadmap. 

 Modulating the intensity and extent of co-culture is critical 
to maintaining product quality and price while controlling 
eutrophication and feed application at scale. Optimization of 
CRA requires further workshops, technical training and 
problem-solving e�orts. Persistent management and business 
plans, public-private partnerships and technical support are 
critical. Further research is required to understand the impact 
of CRA on GHGs, water quality, and biodiversity. Scienti�c 
investigations should focus on feed quantity and quality, 
climatic e�ects, system optimization and the suitability of 
co-culture under various conditions. �e environmental and 
ecological e�ects of CRA require further research to understand 
its impact. Key issues include studying its impact on the 
ecology, soil and water environment, improving feeding 
methods, and identifying suitable rice varieties to provide 

farmers with technical knowledge and the use of spatially 
accurate measurement techniques to study greenhouse gas 
emissions and climate change are critical. Other developing 
countries are advised to learn from China’s approach to 
overcoming initial investment challenges in rural communities 
through educational activities and supportive policies.
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Category Details
Advancements in Rice-Aquatic Animal Co-Culture
Increased Rice Yield Rice-animal co-cultures boost rice yield compared to rice monocultures.
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fertility.
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Reduces leaching by 13% in rice-animal co-culture systems.

Increased Annual Rice Yields Increases annual rice yields by 4% (global assessment of 155 case studies).
Methane Emissions Alleviation Reduces CH4 (methane) emissions by 86.8%.
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 CRA has been found to reduce methane emissions and the 
potential for global warming. CRA was observed to decrease the 
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behavior, drainage, and has no signi�cant e�ects on N2O 
emission relative to rice monoculture. Conversion from 
traditional rice monoculture to CRA involving �sh, crab, 
cray�sh, and duck has been shown to signi�cantly reduce N2O 
emissions and improve N use e�ciency. CRA o�er many 
positive aspects to farmers and others including ecological, 
economic and social advantages. CRA can improve �eld water 
ecology, increase sources of organic fertilizer, and change the 
carbon-nitrogen ratio. But it may also lead to resource 
competition and water pollution downstream [33,34].

Ecological Benefits
CRA provide a variety of bene�ts to farmers and others, 
including ecological, economic, and social advantages. CRA 
improves �eld water ecology, provide organic fertilizer, and 
thereby increase the carbon-nitrogen ratio [22]. However, there 
are concerns about possible water contamination from aquatic 
animal waste and excess feed [40]. �e ecological positive 
aspects of CRA are mainly related to resource and nutrient 

utilization and biodiversity (Figure 2). Biodiversity is 
threatened by environmental pressures and human activities in 
aquatic ecosystems. CRA maintain biodiversity and support a 
variety of aquatic �ora and fauna. Researches show that these 
co-culture systems have no negative impact on �sh abundance 
and aquatic biodiversity [39,40]. �e adoption of CRA can 
enhance biodiversity and enable resilient and productive 
agriculture. CRA is a complex integrated system with direct and 
indirect interactions between organisms. �e system improves 
water utilization e�ciency by providing shade, soil loosening, 
and pest control for aquatic animals. Year-round �ooding 
conditions can reduce soil fertility and alter soil properties [21]. 

 Co-culture also promotes a dynamic nutrient cycle. Excess N 
in the rice �elds is absorbed by aquatic animals and their 
excrement becomes nutrients for the rice plants and utilizing 
excess N for �sh production can help improve the socioeconomic 
status of rural communities [20]. CRA has gained global 
attention since the 1970s with many governments promoting the 
adoption of this technology through technical support and tax 
incentives. With the world's largest cultivated land area, China 
encourages farmers to shi� to intensive CRA to enhance 
agricultural productivity. �ese enhanced co-culture systems not 

Socioeconomics Benefits
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utilization and improve socioeconomic status. Since 1970, this 
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the government has taken measures to support farmers in 
transitioning to precision farming. �is shi� to cultivated rice is 

intended to increase productivity, increase farm income and 
increase resilience to climate change and the impact of 
upstream dams. Integrated rice farming has signi�cant 
advantages. In CRA system the �sh production has also 
increased signi�cantly, reaching 600 kg ha-1 ya-1 [12]. �e 
market price of rice is as high as US$1.52 kg-1, while the market 
price of traditional monoculture rice is US$0.61-0.91 kg-1 
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Population growth has led to global challenges such as food 
shortages, nutrient de�ciency, less water and land resources 
availability for agriculture and environmental degradation [1,2]. 
Rice (Oryza sativa L.) serves as a staple food and its production 
covers 155 to 160 million hectares (ha) and feeds 50% of the 
worldwide population plays a key role in meeting global food 
security needs [3]. Each year, about 480 million tons of milled 
rice are produced [4], with China and India alone accounting 
for 50% of rice cultivation and consumption [5]. Economically, 
rice is an important agricultural commodity, a�ecting the 
livelihoods of millions of farmers and an integral part of the 
agri-food system [6]. In 2022, China's rice output will exceed 
208 million tons and becoming the world's largest rice 
cultivator. Ensuring sustainable rice production while 
addressing challenges such as climate change, resource scarcity 
and market volatility is critical to maintaining food security and 
economic stability. But it is a major sector that wastes water and 
emits greenhouse gases (GHGs) [7].

 Aquatic foods, including �sh and other marine life are 
critical to global food security. It is providing essential nutrients 
to billions of people around the world [8]. Since 1961, world 
consumption of aquatic food has increased by an average annual 
rate of 3.0% and reached 20.2 kilograms per capita which is 
more than twice the consumption in the 1960s [9,10]. In 2021, 
approximately 23.8 million tons of aquatic food were lost or 
wasted, accounting for 14.8% of global production [11]. 

Co-culture of rice and aquatic animals (CRA) is a strategy to 
enhance land and water resource utilization and reduce 
environmental pollution [12]. �is review explores the 
advantages and limitations of CRA with focusing on its impact 
on farm pro�tability for environmental and management of 
rice production systems sustainability [13]. Speci�cally, it 
examines the e�ects of CRA on water quality, food yields, 
greenhouse gas emissions, and nitrogen (N) transformations. 
Rice production consumes 90% of Asia’s irrigation water and 
makes it a signi�cant source of resource waste and greenhouse 
gas emissions [14]. 

 Rice cultivation requires huge application of chemical 
fertilizers that can have adverse environmental impacts such 
as N loss GHGs emissions and water pollution [15]. N is a 
macronutrient that contributes to high crop yields and is used 
in 16% of fertilizers used in rice systems globally [12]. Only 
28% is used by rice crops and the rest of fertilizer results in 
runo�, leaching, gas emissions, and soil retention [16]. 
Aquaculture is the cultivation of aquatic organisms such as 
�sh, shell�sh, crabs, and shrimp in marine or freshwater 
systems which is a key component of food security. Rice �elds 
contain large amounts of water that can be used for 
aquaculture such as CRA farming. �e system can provide 
su�cient numbers of aquatic animals for food and control 
problems associated with monoculture aquaculture systems 
through the complementary use of water and land resources. 

 A study conducted to evaluate the viability and economic 
impact of an integrated CRA in Bangladesh found that this 
approach provides greater net positive aspects and lower 
production costs for �sh and rice than rice monoculture 
because yields were higher. Compared to rice monoculture net 
farm income in co-farming systems was 64.4% more in the wet 
season and 98.2% more in the dry season. Furthermore, �sh 
production increases by 600 kg ha per year in shallow inundated 
regions and by 1.5 t ha-1 in deeply inundated regions. 
Co-culture systems generated US 437 ha-1, 20-85% higher than 
monocultures [29,33]. 
 Agricultural sector is the main source of GHGs and 
mainly emits methane (CH4), carbon dioxide (CO2) and 

nitrous oxide (N2O). In CRA, aquatic animals increase 
dissolved oxygen (DO) levels through their movement in the 
water, potentially reducing greenhouse gas emissions [34]. 
Anthropogenic activities in rice systems participate 
approximately 20% of world’s CH4 production [35]. Methane 
emissions from these systems depend on the anaerobic 
degradation of organic matter in underwater conditions with 
a low oxygen supply. Aquatic animals such as crabs and carp 
can a�ect CH4 production by a�ecting soil layers and 
increasing DOC in water and soil. A meta-analysis of 247 
pairwise comparisons demonstrated that CRA signi�cantly 
alleviated CH4 emission by 86.8% and also improved rice 
output by 49.2% in Table 1.

Co-culture systems have the potential to enhance food security 
and improve farmer economies in rural areas, as they provide 
more external feed containing nutrients and minimize 
environmental pollution [17,18]. 
 Ancient China and India initiated the practice of CRA with 
the practice being developed in China around 2000 years ago. It 
has since been adopted by countries such as Vietnam, India, 
Indonesia, Malaysia, Egypt, Philippines and Bangladesh 
[19,20]. In recent decades, CRA has gained attention because of 
its economic returns with surety. Additional aquatic species 
have appeared in co-culture systems, including shrimps, crabs, 
cray�sh, prawns, turtles and duck. �e so�shell turtle has been 
increasingly integrated into CRA in China due to its extensive 
medicinal applications, high protein content, and signi�cant 
economic value. Objectives of the study are to evaluate the 
feasibility and positive aspects of CRA in addressing global food 
security challenges, resource e�ciency, and environmental 
sustainability while assessing their impact on farm pro�tability, 
water quality, and greenhouse gas emissions [21,22].
Agricultural Sustainability
China leads in e�ciently using co-culture systems and 
optimizing resources to achieve high output of rice and aquatic 
life. As early as 1990, China's aquatic animal output from 
740,000 ha of rice �elds was only 130,000 tons. Fast forward to 
2020 and those numbers have ballooned from 2.56 million ha to 
3.25 million tons. It’s not just about quantity; Rice yields are 
consistently 8.7% to 12.1% higher on these water-rich lands 
[23]. Fish, crabs and turtles thrive in the rice �elds, playing their 
part in fending o� pests and promoting nutrient recycling [24]. 
It’s a win-win for the rice and the people who live in the water. A 
research showed that China’s �sh production is relatively high, 
approximately 1.9 to 2.5 t ha-1, followed by Vietnam 2.2 t ha-1, 
India 1.3 to 2.0 t ha-1, Bangladesh 1.08 t ha-1, Indonesia 0.3 to 
0.89 t ha-1 and �ailand 0.9 to 1.1 t ha-1 with rice yield of 9.3 to 
12 t ha-1, 4.2 to 5.7 t ha-1, 3.0 to 4.6 t ha-1, 3.8 to 5.0 t ha-1 and 6.5 
to 7.8 t ha-1 respectively whereas, the co-culture with rice were 
cray�sh, turtle, �sh and crabs in China, �sh in Indonesia, 
Vietnam and �ailand, crabs, shrimps, and �sh in India and 
prawn, shrimps and �sh in Bangladesh. Common �sh species 
were used in this study were Barbodes gonionotus, Oreochromis 
niloticus, Cirrhinus mrigala, Puntius gonionotus, Catla catla and 
Cyprinus carpio [12]. Because of bene�cial results, India and 
Indonesia have launched extension plans for farmers to shi� 
their traditional rice cultivation system to rice and aquatic 
animals co-culture system. CRA has become an important 
aspect of India's organic aquaculture program. Inspired by its 
success and e�ectiveness in Asian countries, African countries 
have adopted similar co-cultural systems [25]. 

Environmental Interactions 
Rice cultivation faces challenges from abiotic and biotic 
stresses, a�ecting yield and quality. Biological challenges 
include bacterial leaf blight, rice blast and bakanae disease. 

Weeds also compete for resources and hinder productivity. 
Abiotic stresses in agriculture pose major challenges to crop 
growth. Drought and high temperatures can reduce yields, 
while �ooding and high soil salinity can hinder water and 
nutrient uptake. Harmful radiation and gaseous pollutants such 
as ozone also impair photosynthesis. Heavy metals in 
contaminated soil further threaten crop growth. �e impact of 
these pressures is staggering [26]. Modeling studies show that 
by 2050, average rice yields could be 17% lower than in 2000. 
�is could lead to food insecurity for an estimated 1.6 billion 
people in Asia and malnutrition for millions of children in 
South and East Asia [27]. 

 Environmental factors in�uencing CRA include water level, 
temperature, transparency, pH, dissolved oxygen, and carbon 
dioxide (DOC). Levels of DOC depend mainly on the 
photosynthesis of organisms and the respiration species in 
CRA. Elevated CO2 and NH3 concentrations pose signi�cant 
risks to farmed animals [25,28]. Rice cultivation considered as 
source of pollutant for water bodies because of nutrients and 
pesticide application. Improvement of paddy water in 
important of rice cultivation. Rice mono-cultivation utilize only 
the required N and rest is lost on environment [12]. On other 
hands, rice-aquatic life co-culture trend enhances N use 
e�ciency for plants and reduce its losses because of aquatic life. 
By improving the organic carbon, P, N, and K this so-culture 
enhance soil fertility and production sustainability. Previous 
researches reported that this co-culture reduces the fertilizers 
use up-to 26% as compare to mono-cultured rice farming. 
Moreover, reduced nutrients (N and P) concentration in 
co-culture was reduced up-to 79% than mono-cultured �sh 
farming. Co-culture system minimized the pesticide use up-to 
68% [12,29,30]. 

 Recommended conditions (Figure 1) for CRA are designed 
to support the growth and health of rice (culture period of 
90-120 days) and aquatic organisms. Keeping carbon dioxide 
levels below 10 ppm prevents acidic conditions, while dissolved 
oxygen levels between 5.0-7.5 ppm ensure adequate respiration 
for aquatic life. A water level of 30-90 cm provides optimal 
submergence space for rice and optimal habitat space for 
aquatic organisms with a pH range (neutral to alkaline) from 
6.5 to 9.0 supports nutrient availability and safety for plants and 
animals. Water clarity of 25-30 cm provides su�cient light for 
photosynthesis while maintaining a healthy ecosystem balance, 
and a temperature range of 25-35°C, and ionized ammonia 
promotes optimal growth and development of rice and tropical 
aquatic life [28]. Designs recommendations provided by various 
researches are rice ridge and �sh ditch farming system in China, 
peripheral trench, latticed trenches, Y-shaped trench, diagonal 
trench, peripheral with one central longitudinal trench, 
peripheral with two equidistant transverse trenches and design 
and construction of Indonesian rice + �sh farm with lateral 
pond [19,31,32].

only improve productivity but also enhance the adaptability ratio 
for climate change and upstream dam impacts [41].

 CRA involves bene�cial interactions between organisms to 
improve water use e�ciency. Rice provides shade and lowers 
water temperatures, bene�ting aquatic animals. Animal 
movement bene�ts soil quality and nutrient availability, while 
also controlling pests and reducing the need for pesticides 
[42,43]. However, year-round �ooding can lead to reduced soil 
fertility and other negative changes in soil properties. CRA is an 

e�cient and sustainable way to utilize nutrients. Excess N in 
rice is absorbed by aquatic animals such as �sh, crabs, and 
shrimps, preventing runo� during the rainy season. �e animal 
waste then becomes nutrients for the rice, thus accelerating the 
nutrient cycle. In addition, �sh that consume the remaining N 
from rice �elds can be sold in the market, thereby improving the 
socioeconomic status of rural communities. In Bangladesh, 
CRA is now basic part of green economy and integrated 
management of land, water and aquatic resources [12,42].

[44,45]. �is price premium is attributed to the ecological 
bene�t of �sh consuming weeds and insects, which reduces the 
need for pesticides and herbicides, thereby improving food 
security [33].

 Using the cray�sh in CRA, the cost of synthetic fertilizers 
and chemical pesticides was reduced by 79.5% and 50.0% 
respectively compared with rice monoculture, while the net 
ecosystem economic budget (NB) increased by 26.90-75.60%. 
In addition, the rice-crab co-culture system signi�cantly 
improved NB, and the positive aspects of bigeye crabs and 
juvenile crabs far exceeded that of rice monoculture. Overall, 
the net income of co-culture systems can be 115% higher than 
that of �sh monoculture, demonstrating signi�cant economic 
and ecological bene�ts [12,46].

Limitations and Challenges
�e adoption of CRA is hindered by factors such as technical 
pro�ciency, risks associated with �oods and droughts, and the 
need for integrated management. Lack of technical knowledge, 
�nancial support and poor management are signi�cant 
limitations. Excessive use of chemical fertilizers and pesticides 
a�ects habitats and aquatic animal production. Expanding 
co-culture areas without considering market demand may 
result in reduced product value and price. Challenges include 
environmental contamination, excessive competition between 
organisms, and economic losses due to installation costs and 
predator attacks. �e study also points to the need for better 
training of farmers and incentives to adopt CRA instead of rice 
monoculture.

Conclusions
Rice cultivation relies majorly on chemical fertilizers, especially 
nitrogen fertilizers, to ensure food security. Farming aquatic 
animals alongside rice can bring economic, ecological and 
social advantages. But challenges such as lack of technical 
knowledge and poor management hinder widespread adoption.  
�e review concludes that CRA o�er several advantages over 
monoculture systems and can increase agricultural yields, 
incomes and land/water use. However, its e�ects on water 
quality and greenhouse gas emissions are uncertain and may 
vary depending on climate and site conditions. Co-culture can 
reduce greenhouse gas emissions and improve water quality, but 
may also lead to increased greenhouse gas emissions. 
Addressing vulnerabilities to climate change, such as droughts 
and �oods needs a strong policy roadmap. 

 Modulating the intensity and extent of co-culture is critical 
to maintaining product quality and price while controlling 
eutrophication and feed application at scale. Optimization of 
CRA requires further workshops, technical training and 
problem-solving e�orts. Persistent management and business 
plans, public-private partnerships and technical support are 
critical. Further research is required to understand the impact 
of CRA on GHGs, water quality, and biodiversity. Scienti�c 
investigations should focus on feed quantity and quality, 
climatic e�ects, system optimization and the suitability of 
co-culture under various conditions. �e environmental and 
ecological e�ects of CRA require further research to understand 
its impact. Key issues include studying its impact on the 
ecology, soil and water environment, improving feeding 
methods, and identifying suitable rice varieties to provide 

farmers with technical knowledge and the use of spatially 
accurate measurement techniques to study greenhouse gas 
emissions and climate change are critical. Other developing 
countries are advised to learn from China’s approach to 
overcoming initial investment challenges in rural communities 
through educational activities and supportive policies.
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Population growth has led to global challenges such as food 
shortages, nutrient de�ciency, less water and land resources 
availability for agriculture and environmental degradation [1,2]. 
Rice (Oryza sativa L.) serves as a staple food and its production 
covers 155 to 160 million hectares (ha) and feeds 50% of the 
worldwide population plays a key role in meeting global food 
security needs [3]. Each year, about 480 million tons of milled 
rice are produced [4], with China and India alone accounting 
for 50% of rice cultivation and consumption [5]. Economically, 
rice is an important agricultural commodity, a�ecting the 
livelihoods of millions of farmers and an integral part of the 
agri-food system [6]. In 2022, China's rice output will exceed 
208 million tons and becoming the world's largest rice 
cultivator. Ensuring sustainable rice production while 
addressing challenges such as climate change, resource scarcity 
and market volatility is critical to maintaining food security and 
economic stability. But it is a major sector that wastes water and 
emits greenhouse gases (GHGs) [7].

 Aquatic foods, including �sh and other marine life are 
critical to global food security. It is providing essential nutrients 
to billions of people around the world [8]. Since 1961, world 
consumption of aquatic food has increased by an average annual 
rate of 3.0% and reached 20.2 kilograms per capita which is 
more than twice the consumption in the 1960s [9,10]. In 2021, 
approximately 23.8 million tons of aquatic food were lost or 
wasted, accounting for 14.8% of global production [11]. 

Co-culture of rice and aquatic animals (CRA) is a strategy to 
enhance land and water resource utilization and reduce 
environmental pollution [12]. �is review explores the 
advantages and limitations of CRA with focusing on its impact 
on farm pro�tability for environmental and management of 
rice production systems sustainability [13]. Speci�cally, it 
examines the e�ects of CRA on water quality, food yields, 
greenhouse gas emissions, and nitrogen (N) transformations. 
Rice production consumes 90% of Asia’s irrigation water and 
makes it a signi�cant source of resource waste and greenhouse 
gas emissions [14]. 

 Rice cultivation requires huge application of chemical 
fertilizers that can have adverse environmental impacts such 
as N loss GHGs emissions and water pollution [15]. N is a 
macronutrient that contributes to high crop yields and is used 
in 16% of fertilizers used in rice systems globally [12]. Only 
28% is used by rice crops and the rest of fertilizer results in 
runo�, leaching, gas emissions, and soil retention [16]. 
Aquaculture is the cultivation of aquatic organisms such as 
�sh, shell�sh, crabs, and shrimp in marine or freshwater 
systems which is a key component of food security. Rice �elds 
contain large amounts of water that can be used for 
aquaculture such as CRA farming. �e system can provide 
su�cient numbers of aquatic animals for food and control 
problems associated with monoculture aquaculture systems 
through the complementary use of water and land resources. 

 A study conducted to evaluate the viability and economic 
impact of an integrated CRA in Bangladesh found that this 
approach provides greater net positive aspects and lower 
production costs for �sh and rice than rice monoculture 
because yields were higher. Compared to rice monoculture net 
farm income in co-farming systems was 64.4% more in the wet 
season and 98.2% more in the dry season. Furthermore, �sh 
production increases by 600 kg ha per year in shallow inundated 
regions and by 1.5 t ha-1 in deeply inundated regions. 
Co-culture systems generated US 437 ha-1, 20-85% higher than 
monocultures [29,33]. 
 Agricultural sector is the main source of GHGs and 
mainly emits methane (CH4), carbon dioxide (CO2) and 

nitrous oxide (N2O). In CRA, aquatic animals increase 
dissolved oxygen (DO) levels through their movement in the 
water, potentially reducing greenhouse gas emissions [34]. 
Anthropogenic activities in rice systems participate 
approximately 20% of world’s CH4 production [35]. Methane 
emissions from these systems depend on the anaerobic 
degradation of organic matter in underwater conditions with 
a low oxygen supply. Aquatic animals such as crabs and carp 
can a�ect CH4 production by a�ecting soil layers and 
increasing DOC in water and soil. A meta-analysis of 247 
pairwise comparisons demonstrated that CRA signi�cantly 
alleviated CH4 emission by 86.8% and also improved rice 
output by 49.2% in Table 1.

Co-culture systems have the potential to enhance food security 
and improve farmer economies in rural areas, as they provide 
more external feed containing nutrients and minimize 
environmental pollution [17,18]. 
 Ancient China and India initiated the practice of CRA with 
the practice being developed in China around 2000 years ago. It 
has since been adopted by countries such as Vietnam, India, 
Indonesia, Malaysia, Egypt, Philippines and Bangladesh 
[19,20]. In recent decades, CRA has gained attention because of 
its economic returns with surety. Additional aquatic species 
have appeared in co-culture systems, including shrimps, crabs, 
cray�sh, prawns, turtles and duck. �e so�shell turtle has been 
increasingly integrated into CRA in China due to its extensive 
medicinal applications, high protein content, and signi�cant 
economic value. Objectives of the study are to evaluate the 
feasibility and positive aspects of CRA in addressing global food 
security challenges, resource e�ciency, and environmental 
sustainability while assessing their impact on farm pro�tability, 
water quality, and greenhouse gas emissions [21,22].
Agricultural Sustainability
China leads in e�ciently using co-culture systems and 
optimizing resources to achieve high output of rice and aquatic 
life. As early as 1990, China's aquatic animal output from 
740,000 ha of rice �elds was only 130,000 tons. Fast forward to 
2020 and those numbers have ballooned from 2.56 million ha to 
3.25 million tons. It’s not just about quantity; Rice yields are 
consistently 8.7% to 12.1% higher on these water-rich lands 
[23]. Fish, crabs and turtles thrive in the rice �elds, playing their 
part in fending o� pests and promoting nutrient recycling [24]. 
It’s a win-win for the rice and the people who live in the water. A 
research showed that China’s �sh production is relatively high, 
approximately 1.9 to 2.5 t ha-1, followed by Vietnam 2.2 t ha-1, 
India 1.3 to 2.0 t ha-1, Bangladesh 1.08 t ha-1, Indonesia 0.3 to 
0.89 t ha-1 and �ailand 0.9 to 1.1 t ha-1 with rice yield of 9.3 to 
12 t ha-1, 4.2 to 5.7 t ha-1, 3.0 to 4.6 t ha-1, 3.8 to 5.0 t ha-1 and 6.5 
to 7.8 t ha-1 respectively whereas, the co-culture with rice were 
cray�sh, turtle, �sh and crabs in China, �sh in Indonesia, 
Vietnam and �ailand, crabs, shrimps, and �sh in India and 
prawn, shrimps and �sh in Bangladesh. Common �sh species 
were used in this study were Barbodes gonionotus, Oreochromis 
niloticus, Cirrhinus mrigala, Puntius gonionotus, Catla catla and 
Cyprinus carpio [12]. Because of bene�cial results, India and 
Indonesia have launched extension plans for farmers to shi� 
their traditional rice cultivation system to rice and aquatic 
animals co-culture system. CRA has become an important 
aspect of India's organic aquaculture program. Inspired by its 
success and e�ectiveness in Asian countries, African countries 
have adopted similar co-cultural systems [25]. 

Environmental Interactions 
Rice cultivation faces challenges from abiotic and biotic 
stresses, a�ecting yield and quality. Biological challenges 
include bacterial leaf blight, rice blast and bakanae disease. 

Weeds also compete for resources and hinder productivity. 
Abiotic stresses in agriculture pose major challenges to crop 
growth. Drought and high temperatures can reduce yields, 
while �ooding and high soil salinity can hinder water and 
nutrient uptake. Harmful radiation and gaseous pollutants such 
as ozone also impair photosynthesis. Heavy metals in 
contaminated soil further threaten crop growth. �e impact of 
these pressures is staggering [26]. Modeling studies show that 
by 2050, average rice yields could be 17% lower than in 2000. 
�is could lead to food insecurity for an estimated 1.6 billion 
people in Asia and malnutrition for millions of children in 
South and East Asia [27]. 

 Environmental factors in�uencing CRA include water level, 
temperature, transparency, pH, dissolved oxygen, and carbon 
dioxide (DOC). Levels of DOC depend mainly on the 
photosynthesis of organisms and the respiration species in 
CRA. Elevated CO2 and NH3 concentrations pose signi�cant 
risks to farmed animals [25,28]. Rice cultivation considered as 
source of pollutant for water bodies because of nutrients and 
pesticide application. Improvement of paddy water in 
important of rice cultivation. Rice mono-cultivation utilize only 
the required N and rest is lost on environment [12]. On other 
hands, rice-aquatic life co-culture trend enhances N use 
e�ciency for plants and reduce its losses because of aquatic life. 
By improving the organic carbon, P, N, and K this so-culture 
enhance soil fertility and production sustainability. Previous 
researches reported that this co-culture reduces the fertilizers 
use up-to 26% as compare to mono-cultured rice farming. 
Moreover, reduced nutrients (N and P) concentration in 
co-culture was reduced up-to 79% than mono-cultured �sh 
farming. Co-culture system minimized the pesticide use up-to 
68% [12,29,30]. 

 Recommended conditions (Figure 1) for CRA are designed 
to support the growth and health of rice (culture period of 
90-120 days) and aquatic organisms. Keeping carbon dioxide 
levels below 10 ppm prevents acidic conditions, while dissolved 
oxygen levels between 5.0-7.5 ppm ensure adequate respiration 
for aquatic life. A water level of 30-90 cm provides optimal 
submergence space for rice and optimal habitat space for 
aquatic organisms with a pH range (neutral to alkaline) from 
6.5 to 9.0 supports nutrient availability and safety for plants and 
animals. Water clarity of 25-30 cm provides su�cient light for 
photosynthesis while maintaining a healthy ecosystem balance, 
and a temperature range of 25-35°C, and ionized ammonia 
promotes optimal growth and development of rice and tropical 
aquatic life [28]. Designs recommendations provided by various 
researches are rice ridge and �sh ditch farming system in China, 
peripheral trench, latticed trenches, Y-shaped trench, diagonal 
trench, peripheral with one central longitudinal trench, 
peripheral with two equidistant transverse trenches and design 
and construction of Indonesian rice + �sh farm with lateral 
pond [19,31,32].

only improve productivity but also enhance the adaptability ratio 
for climate change and upstream dam impacts [41].

 CRA involves bene�cial interactions between organisms to 
improve water use e�ciency. Rice provides shade and lowers 
water temperatures, bene�ting aquatic animals. Animal 
movement bene�ts soil quality and nutrient availability, while 
also controlling pests and reducing the need for pesticides 
[42,43]. However, year-round �ooding can lead to reduced soil 
fertility and other negative changes in soil properties. CRA is an 

e�cient and sustainable way to utilize nutrients. Excess N in 
rice is absorbed by aquatic animals such as �sh, crabs, and 
shrimps, preventing runo� during the rainy season. �e animal 
waste then becomes nutrients for the rice, thus accelerating the 
nutrient cycle. In addition, �sh that consume the remaining N 
from rice �elds can be sold in the market, thereby improving the 
socioeconomic status of rural communities. In Bangladesh, 
CRA is now basic part of green economy and integrated 
management of land, water and aquatic resources [12,42].

[44,45]. �is price premium is attributed to the ecological 
bene�t of �sh consuming weeds and insects, which reduces the 
need for pesticides and herbicides, thereby improving food 
security [33].

 Using the cray�sh in CRA, the cost of synthetic fertilizers 
and chemical pesticides was reduced by 79.5% and 50.0% 
respectively compared with rice monoculture, while the net 
ecosystem economic budget (NB) increased by 26.90-75.60%. 
In addition, the rice-crab co-culture system signi�cantly 
improved NB, and the positive aspects of bigeye crabs and 
juvenile crabs far exceeded that of rice monoculture. Overall, 
the net income of co-culture systems can be 115% higher than 
that of �sh monoculture, demonstrating signi�cant economic 
and ecological bene�ts [12,46].

Limitations and Challenges
�e adoption of CRA is hindered by factors such as technical 
pro�ciency, risks associated with �oods and droughts, and the 
need for integrated management. Lack of technical knowledge, 
�nancial support and poor management are signi�cant 
limitations. Excessive use of chemical fertilizers and pesticides 
a�ects habitats and aquatic animal production. Expanding 
co-culture areas without considering market demand may 
result in reduced product value and price. Challenges include 
environmental contamination, excessive competition between 
organisms, and economic losses due to installation costs and 
predator attacks. �e study also points to the need for better 
training of farmers and incentives to adopt CRA instead of rice 
monoculture.

Conclusions
Rice cultivation relies majorly on chemical fertilizers, especially 
nitrogen fertilizers, to ensure food security. Farming aquatic 
animals alongside rice can bring economic, ecological and 
social advantages. But challenges such as lack of technical 
knowledge and poor management hinder widespread adoption.  
�e review concludes that CRA o�er several advantages over 
monoculture systems and can increase agricultural yields, 
incomes and land/water use. However, its e�ects on water 
quality and greenhouse gas emissions are uncertain and may 
vary depending on climate and site conditions. Co-culture can 
reduce greenhouse gas emissions and improve water quality, but 
may also lead to increased greenhouse gas emissions. 
Addressing vulnerabilities to climate change, such as droughts 
and �oods needs a strong policy roadmap. 

 Modulating the intensity and extent of co-culture is critical 
to maintaining product quality and price while controlling 
eutrophication and feed application at scale. Optimization of 
CRA requires further workshops, technical training and 
problem-solving e�orts. Persistent management and business 
plans, public-private partnerships and technical support are 
critical. Further research is required to understand the impact 
of CRA on GHGs, water quality, and biodiversity. Scienti�c 
investigations should focus on feed quantity and quality, 
climatic e�ects, system optimization and the suitability of 
co-culture under various conditions. �e environmental and 
ecological e�ects of CRA require further research to understand 
its impact. Key issues include studying its impact on the 
ecology, soil and water environment, improving feeding 
methods, and identifying suitable rice varieties to provide 

farmers with technical knowledge and the use of spatially 
accurate measurement techniques to study greenhouse gas 
emissions and climate change are critical. Other developing 
countries are advised to learn from China’s approach to 
overcoming initial investment challenges in rural communities 
through educational activities and supportive policies.
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Population growth has led to global challenges such as food 
shortages, nutrient de�ciency, less water and land resources 
availability for agriculture and environmental degradation [1,2]. 
Rice (Oryza sativa L.) serves as a staple food and its production 
covers 155 to 160 million hectares (ha) and feeds 50% of the 
worldwide population plays a key role in meeting global food 
security needs [3]. Each year, about 480 million tons of milled 
rice are produced [4], with China and India alone accounting 
for 50% of rice cultivation and consumption [5]. Economically, 
rice is an important agricultural commodity, a�ecting the 
livelihoods of millions of farmers and an integral part of the 
agri-food system [6]. In 2022, China's rice output will exceed 
208 million tons and becoming the world's largest rice 
cultivator. Ensuring sustainable rice production while 
addressing challenges such as climate change, resource scarcity 
and market volatility is critical to maintaining food security and 
economic stability. But it is a major sector that wastes water and 
emits greenhouse gases (GHGs) [7].

 Aquatic foods, including �sh and other marine life are 
critical to global food security. It is providing essential nutrients 
to billions of people around the world [8]. Since 1961, world 
consumption of aquatic food has increased by an average annual 
rate of 3.0% and reached 20.2 kilograms per capita which is 
more than twice the consumption in the 1960s [9,10]. In 2021, 
approximately 23.8 million tons of aquatic food were lost or 
wasted, accounting for 14.8% of global production [11]. 

Co-culture of rice and aquatic animals (CRA) is a strategy to 
enhance land and water resource utilization and reduce 
environmental pollution [12]. �is review explores the 
advantages and limitations of CRA with focusing on its impact 
on farm pro�tability for environmental and management of 
rice production systems sustainability [13]. Speci�cally, it 
examines the e�ects of CRA on water quality, food yields, 
greenhouse gas emissions, and nitrogen (N) transformations. 
Rice production consumes 90% of Asia’s irrigation water and 
makes it a signi�cant source of resource waste and greenhouse 
gas emissions [14]. 

 Rice cultivation requires huge application of chemical 
fertilizers that can have adverse environmental impacts such 
as N loss GHGs emissions and water pollution [15]. N is a 
macronutrient that contributes to high crop yields and is used 
in 16% of fertilizers used in rice systems globally [12]. Only 
28% is used by rice crops and the rest of fertilizer results in 
runo�, leaching, gas emissions, and soil retention [16]. 
Aquaculture is the cultivation of aquatic organisms such as 
�sh, shell�sh, crabs, and shrimp in marine or freshwater 
systems which is a key component of food security. Rice �elds 
contain large amounts of water that can be used for 
aquaculture such as CRA farming. �e system can provide 
su�cient numbers of aquatic animals for food and control 
problems associated with monoculture aquaculture systems 
through the complementary use of water and land resources. 

 A study conducted to evaluate the viability and economic 
impact of an integrated CRA in Bangladesh found that this 
approach provides greater net positive aspects and lower 
production costs for �sh and rice than rice monoculture 
because yields were higher. Compared to rice monoculture net 
farm income in co-farming systems was 64.4% more in the wet 
season and 98.2% more in the dry season. Furthermore, �sh 
production increases by 600 kg ha per year in shallow inundated 
regions and by 1.5 t ha-1 in deeply inundated regions. 
Co-culture systems generated US 437 ha-1, 20-85% higher than 
monocultures [29,33]. 
 Agricultural sector is the main source of GHGs and 
mainly emits methane (CH4), carbon dioxide (CO2) and 

nitrous oxide (N2O). In CRA, aquatic animals increase 
dissolved oxygen (DO) levels through their movement in the 
water, potentially reducing greenhouse gas emissions [34]. 
Anthropogenic activities in rice systems participate 
approximately 20% of world’s CH4 production [35]. Methane 
emissions from these systems depend on the anaerobic 
degradation of organic matter in underwater conditions with 
a low oxygen supply. Aquatic animals such as crabs and carp 
can a�ect CH4 production by a�ecting soil layers and 
increasing DOC in water and soil. A meta-analysis of 247 
pairwise comparisons demonstrated that CRA signi�cantly 
alleviated CH4 emission by 86.8% and also improved rice 
output by 49.2% in Table 1.

Co-culture systems have the potential to enhance food security 
and improve farmer economies in rural areas, as they provide 
more external feed containing nutrients and minimize 
environmental pollution [17,18]. 
 Ancient China and India initiated the practice of CRA with 
the practice being developed in China around 2000 years ago. It 
has since been adopted by countries such as Vietnam, India, 
Indonesia, Malaysia, Egypt, Philippines and Bangladesh 
[19,20]. In recent decades, CRA has gained attention because of 
its economic returns with surety. Additional aquatic species 
have appeared in co-culture systems, including shrimps, crabs, 
cray�sh, prawns, turtles and duck. �e so�shell turtle has been 
increasingly integrated into CRA in China due to its extensive 
medicinal applications, high protein content, and signi�cant 
economic value. Objectives of the study are to evaluate the 
feasibility and positive aspects of CRA in addressing global food 
security challenges, resource e�ciency, and environmental 
sustainability while assessing their impact on farm pro�tability, 
water quality, and greenhouse gas emissions [21,22].
Agricultural Sustainability
China leads in e�ciently using co-culture systems and 
optimizing resources to achieve high output of rice and aquatic 
life. As early as 1990, China's aquatic animal output from 
740,000 ha of rice �elds was only 130,000 tons. Fast forward to 
2020 and those numbers have ballooned from 2.56 million ha to 
3.25 million tons. It’s not just about quantity; Rice yields are 
consistently 8.7% to 12.1% higher on these water-rich lands 
[23]. Fish, crabs and turtles thrive in the rice �elds, playing their 
part in fending o� pests and promoting nutrient recycling [24]. 
It’s a win-win for the rice and the people who live in the water. A 
research showed that China’s �sh production is relatively high, 
approximately 1.9 to 2.5 t ha-1, followed by Vietnam 2.2 t ha-1, 
India 1.3 to 2.0 t ha-1, Bangladesh 1.08 t ha-1, Indonesia 0.3 to 
0.89 t ha-1 and �ailand 0.9 to 1.1 t ha-1 with rice yield of 9.3 to 
12 t ha-1, 4.2 to 5.7 t ha-1, 3.0 to 4.6 t ha-1, 3.8 to 5.0 t ha-1 and 6.5 
to 7.8 t ha-1 respectively whereas, the co-culture with rice were 
cray�sh, turtle, �sh and crabs in China, �sh in Indonesia, 
Vietnam and �ailand, crabs, shrimps, and �sh in India and 
prawn, shrimps and �sh in Bangladesh. Common �sh species 
were used in this study were Barbodes gonionotus, Oreochromis 
niloticus, Cirrhinus mrigala, Puntius gonionotus, Catla catla and 
Cyprinus carpio [12]. Because of bene�cial results, India and 
Indonesia have launched extension plans for farmers to shi� 
their traditional rice cultivation system to rice and aquatic 
animals co-culture system. CRA has become an important 
aspect of India's organic aquaculture program. Inspired by its 
success and e�ectiveness in Asian countries, African countries 
have adopted similar co-cultural systems [25]. 

Environmental Interactions 
Rice cultivation faces challenges from abiotic and biotic 
stresses, a�ecting yield and quality. Biological challenges 
include bacterial leaf blight, rice blast and bakanae disease. 

Weeds also compete for resources and hinder productivity. 
Abiotic stresses in agriculture pose major challenges to crop 
growth. Drought and high temperatures can reduce yields, 
while �ooding and high soil salinity can hinder water and 
nutrient uptake. Harmful radiation and gaseous pollutants such 
as ozone also impair photosynthesis. Heavy metals in 
contaminated soil further threaten crop growth. �e impact of 
these pressures is staggering [26]. Modeling studies show that 
by 2050, average rice yields could be 17% lower than in 2000. 
�is could lead to food insecurity for an estimated 1.6 billion 
people in Asia and malnutrition for millions of children in 
South and East Asia [27]. 

 Environmental factors in�uencing CRA include water level, 
temperature, transparency, pH, dissolved oxygen, and carbon 
dioxide (DOC). Levels of DOC depend mainly on the 
photosynthesis of organisms and the respiration species in 
CRA. Elevated CO2 and NH3 concentrations pose signi�cant 
risks to farmed animals [25,28]. Rice cultivation considered as 
source of pollutant for water bodies because of nutrients and 
pesticide application. Improvement of paddy water in 
important of rice cultivation. Rice mono-cultivation utilize only 
the required N and rest is lost on environment [12]. On other 
hands, rice-aquatic life co-culture trend enhances N use 
e�ciency for plants and reduce its losses because of aquatic life. 
By improving the organic carbon, P, N, and K this so-culture 
enhance soil fertility and production sustainability. Previous 
researches reported that this co-culture reduces the fertilizers 
use up-to 26% as compare to mono-cultured rice farming. 
Moreover, reduced nutrients (N and P) concentration in 
co-culture was reduced up-to 79% than mono-cultured �sh 
farming. Co-culture system minimized the pesticide use up-to 
68% [12,29,30]. 

 Recommended conditions (Figure 1) for CRA are designed 
to support the growth and health of rice (culture period of 
90-120 days) and aquatic organisms. Keeping carbon dioxide 
levels below 10 ppm prevents acidic conditions, while dissolved 
oxygen levels between 5.0-7.5 ppm ensure adequate respiration 
for aquatic life. A water level of 30-90 cm provides optimal 
submergence space for rice and optimal habitat space for 
aquatic organisms with a pH range (neutral to alkaline) from 
6.5 to 9.0 supports nutrient availability and safety for plants and 
animals. Water clarity of 25-30 cm provides su�cient light for 
photosynthesis while maintaining a healthy ecosystem balance, 
and a temperature range of 25-35°C, and ionized ammonia 
promotes optimal growth and development of rice and tropical 
aquatic life [28]. Designs recommendations provided by various 
researches are rice ridge and �sh ditch farming system in China, 
peripheral trench, latticed trenches, Y-shaped trench, diagonal 
trench, peripheral with one central longitudinal trench, 
peripheral with two equidistant transverse trenches and design 
and construction of Indonesian rice + �sh farm with lateral 
pond [19,31,32].

only improve productivity but also enhance the adaptability ratio 
for climate change and upstream dam impacts [41].

 CRA involves bene�cial interactions between organisms to 
improve water use e�ciency. Rice provides shade and lowers 
water temperatures, bene�ting aquatic animals. Animal 
movement bene�ts soil quality and nutrient availability, while 
also controlling pests and reducing the need for pesticides 
[42,43]. However, year-round �ooding can lead to reduced soil 
fertility and other negative changes in soil properties. CRA is an 

e�cient and sustainable way to utilize nutrients. Excess N in 
rice is absorbed by aquatic animals such as �sh, crabs, and 
shrimps, preventing runo� during the rainy season. �e animal 
waste then becomes nutrients for the rice, thus accelerating the 
nutrient cycle. In addition, �sh that consume the remaining N 
from rice �elds can be sold in the market, thereby improving the 
socioeconomic status of rural communities. In Bangladesh, 
CRA is now basic part of green economy and integrated 
management of land, water and aquatic resources [12,42].

[44,45]. �is price premium is attributed to the ecological 
bene�t of �sh consuming weeds and insects, which reduces the 
need for pesticides and herbicides, thereby improving food 
security [33].

 Using the cray�sh in CRA, the cost of synthetic fertilizers 
and chemical pesticides was reduced by 79.5% and 50.0% 
respectively compared with rice monoculture, while the net 
ecosystem economic budget (NB) increased by 26.90-75.60%. 
In addition, the rice-crab co-culture system signi�cantly 
improved NB, and the positive aspects of bigeye crabs and 
juvenile crabs far exceeded that of rice monoculture. Overall, 
the net income of co-culture systems can be 115% higher than 
that of �sh monoculture, demonstrating signi�cant economic 
and ecological bene�ts [12,46].

Limitations and Challenges
�e adoption of CRA is hindered by factors such as technical 
pro�ciency, risks associated with �oods and droughts, and the 
need for integrated management. Lack of technical knowledge, 
�nancial support and poor management are signi�cant 
limitations. Excessive use of chemical fertilizers and pesticides 
a�ects habitats and aquatic animal production. Expanding 
co-culture areas without considering market demand may 
result in reduced product value and price. Challenges include 
environmental contamination, excessive competition between 
organisms, and economic losses due to installation costs and 
predator attacks. �e study also points to the need for better 
training of farmers and incentives to adopt CRA instead of rice 
monoculture.

Conclusions
Rice cultivation relies majorly on chemical fertilizers, especially 
nitrogen fertilizers, to ensure food security. Farming aquatic 
animals alongside rice can bring economic, ecological and 
social advantages. But challenges such as lack of technical 
knowledge and poor management hinder widespread adoption.  
�e review concludes that CRA o�er several advantages over 
monoculture systems and can increase agricultural yields, 
incomes and land/water use. However, its e�ects on water 
quality and greenhouse gas emissions are uncertain and may 
vary depending on climate and site conditions. Co-culture can 
reduce greenhouse gas emissions and improve water quality, but 
may also lead to increased greenhouse gas emissions. 
Addressing vulnerabilities to climate change, such as droughts 
and �oods needs a strong policy roadmap. 

 Modulating the intensity and extent of co-culture is critical 
to maintaining product quality and price while controlling 
eutrophication and feed application at scale. Optimization of 
CRA requires further workshops, technical training and 
problem-solving e�orts. Persistent management and business 
plans, public-private partnerships and technical support are 
critical. Further research is required to understand the impact 
of CRA on GHGs, water quality, and biodiversity. Scienti�c 
investigations should focus on feed quantity and quality, 
climatic e�ects, system optimization and the suitability of 
co-culture under various conditions. �e environmental and 
ecological e�ects of CRA require further research to understand 
its impact. Key issues include studying its impact on the 
ecology, soil and water environment, improving feeding 
methods, and identifying suitable rice varieties to provide 

farmers with technical knowledge and the use of spatially 
accurate measurement techniques to study greenhouse gas 
emissions and climate change are critical. Other developing 
countries are advised to learn from China’s approach to 
overcoming initial investment challenges in rural communities 
through educational activities and supportive policies.
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Population growth has led to global challenges such as food 
shortages, nutrient de�ciency, less water and land resources 
availability for agriculture and environmental degradation [1,2]. 
Rice (Oryza sativa L.) serves as a staple food and its production 
covers 155 to 160 million hectares (ha) and feeds 50% of the 
worldwide population plays a key role in meeting global food 
security needs [3]. Each year, about 480 million tons of milled 
rice are produced [4], with China and India alone accounting 
for 50% of rice cultivation and consumption [5]. Economically, 
rice is an important agricultural commodity, a�ecting the 
livelihoods of millions of farmers and an integral part of the 
agri-food system [6]. In 2022, China's rice output will exceed 
208 million tons and becoming the world's largest rice 
cultivator. Ensuring sustainable rice production while 
addressing challenges such as climate change, resource scarcity 
and market volatility is critical to maintaining food security and 
economic stability. But it is a major sector that wastes water and 
emits greenhouse gases (GHGs) [7].

 Aquatic foods, including �sh and other marine life are 
critical to global food security. It is providing essential nutrients 
to billions of people around the world [8]. Since 1961, world 
consumption of aquatic food has increased by an average annual 
rate of 3.0% and reached 20.2 kilograms per capita which is 
more than twice the consumption in the 1960s [9,10]. In 2021, 
approximately 23.8 million tons of aquatic food were lost or 
wasted, accounting for 14.8% of global production [11]. 

Co-culture of rice and aquatic animals (CRA) is a strategy to 
enhance land and water resource utilization and reduce 
environmental pollution [12]. �is review explores the 
advantages and limitations of CRA with focusing on its impact 
on farm pro�tability for environmental and management of 
rice production systems sustainability [13]. Speci�cally, it 
examines the e�ects of CRA on water quality, food yields, 
greenhouse gas emissions, and nitrogen (N) transformations. 
Rice production consumes 90% of Asia’s irrigation water and 
makes it a signi�cant source of resource waste and greenhouse 
gas emissions [14]. 

 Rice cultivation requires huge application of chemical 
fertilizers that can have adverse environmental impacts such 
as N loss GHGs emissions and water pollution [15]. N is a 
macronutrient that contributes to high crop yields and is used 
in 16% of fertilizers used in rice systems globally [12]. Only 
28% is used by rice crops and the rest of fertilizer results in 
runo�, leaching, gas emissions, and soil retention [16]. 
Aquaculture is the cultivation of aquatic organisms such as 
�sh, shell�sh, crabs, and shrimp in marine or freshwater 
systems which is a key component of food security. Rice �elds 
contain large amounts of water that can be used for 
aquaculture such as CRA farming. �e system can provide 
su�cient numbers of aquatic animals for food and control 
problems associated with monoculture aquaculture systems 
through the complementary use of water and land resources. 

 A study conducted to evaluate the viability and economic 
impact of an integrated CRA in Bangladesh found that this 
approach provides greater net positive aspects and lower 
production costs for �sh and rice than rice monoculture 
because yields were higher. Compared to rice monoculture net 
farm income in co-farming systems was 64.4% more in the wet 
season and 98.2% more in the dry season. Furthermore, �sh 
production increases by 600 kg ha per year in shallow inundated 
regions and by 1.5 t ha-1 in deeply inundated regions. 
Co-culture systems generated US 437 ha-1, 20-85% higher than 
monocultures [29,33]. 
 Agricultural sector is the main source of GHGs and 
mainly emits methane (CH4), carbon dioxide (CO2) and 

nitrous oxide (N2O). In CRA, aquatic animals increase 
dissolved oxygen (DO) levels through their movement in the 
water, potentially reducing greenhouse gas emissions [34]. 
Anthropogenic activities in rice systems participate 
approximately 20% of world’s CH4 production [35]. Methane 
emissions from these systems depend on the anaerobic 
degradation of organic matter in underwater conditions with 
a low oxygen supply. Aquatic animals such as crabs and carp 
can a�ect CH4 production by a�ecting soil layers and 
increasing DOC in water and soil. A meta-analysis of 247 
pairwise comparisons demonstrated that CRA signi�cantly 
alleviated CH4 emission by 86.8% and also improved rice 
output by 49.2% in Table 1.

Co-culture systems have the potential to enhance food security 
and improve farmer economies in rural areas, as they provide 
more external feed containing nutrients and minimize 
environmental pollution [17,18]. 
 Ancient China and India initiated the practice of CRA with 
the practice being developed in China around 2000 years ago. It 
has since been adopted by countries such as Vietnam, India, 
Indonesia, Malaysia, Egypt, Philippines and Bangladesh 
[19,20]. In recent decades, CRA has gained attention because of 
its economic returns with surety. Additional aquatic species 
have appeared in co-culture systems, including shrimps, crabs, 
cray�sh, prawns, turtles and duck. �e so�shell turtle has been 
increasingly integrated into CRA in China due to its extensive 
medicinal applications, high protein content, and signi�cant 
economic value. Objectives of the study are to evaluate the 
feasibility and positive aspects of CRA in addressing global food 
security challenges, resource e�ciency, and environmental 
sustainability while assessing their impact on farm pro�tability, 
water quality, and greenhouse gas emissions [21,22].
Agricultural Sustainability
China leads in e�ciently using co-culture systems and 
optimizing resources to achieve high output of rice and aquatic 
life. As early as 1990, China's aquatic animal output from 
740,000 ha of rice �elds was only 130,000 tons. Fast forward to 
2020 and those numbers have ballooned from 2.56 million ha to 
3.25 million tons. It’s not just about quantity; Rice yields are 
consistently 8.7% to 12.1% higher on these water-rich lands 
[23]. Fish, crabs and turtles thrive in the rice �elds, playing their 
part in fending o� pests and promoting nutrient recycling [24]. 
It’s a win-win for the rice and the people who live in the water. A 
research showed that China’s �sh production is relatively high, 
approximately 1.9 to 2.5 t ha-1, followed by Vietnam 2.2 t ha-1, 
India 1.3 to 2.0 t ha-1, Bangladesh 1.08 t ha-1, Indonesia 0.3 to 
0.89 t ha-1 and �ailand 0.9 to 1.1 t ha-1 with rice yield of 9.3 to 
12 t ha-1, 4.2 to 5.7 t ha-1, 3.0 to 4.6 t ha-1, 3.8 to 5.0 t ha-1 and 6.5 
to 7.8 t ha-1 respectively whereas, the co-culture with rice were 
cray�sh, turtle, �sh and crabs in China, �sh in Indonesia, 
Vietnam and �ailand, crabs, shrimps, and �sh in India and 
prawn, shrimps and �sh in Bangladesh. Common �sh species 
were used in this study were Barbodes gonionotus, Oreochromis 
niloticus, Cirrhinus mrigala, Puntius gonionotus, Catla catla and 
Cyprinus carpio [12]. Because of bene�cial results, India and 
Indonesia have launched extension plans for farmers to shi� 
their traditional rice cultivation system to rice and aquatic 
animals co-culture system. CRA has become an important 
aspect of India's organic aquaculture program. Inspired by its 
success and e�ectiveness in Asian countries, African countries 
have adopted similar co-cultural systems [25]. 

Environmental Interactions 
Rice cultivation faces challenges from abiotic and biotic 
stresses, a�ecting yield and quality. Biological challenges 
include bacterial leaf blight, rice blast and bakanae disease. 

Weeds also compete for resources and hinder productivity. 
Abiotic stresses in agriculture pose major challenges to crop 
growth. Drought and high temperatures can reduce yields, 
while �ooding and high soil salinity can hinder water and 
nutrient uptake. Harmful radiation and gaseous pollutants such 
as ozone also impair photosynthesis. Heavy metals in 
contaminated soil further threaten crop growth. �e impact of 
these pressures is staggering [26]. Modeling studies show that 
by 2050, average rice yields could be 17% lower than in 2000. 
�is could lead to food insecurity for an estimated 1.6 billion 
people in Asia and malnutrition for millions of children in 
South and East Asia [27]. 

 Environmental factors in�uencing CRA include water level, 
temperature, transparency, pH, dissolved oxygen, and carbon 
dioxide (DOC). Levels of DOC depend mainly on the 
photosynthesis of organisms and the respiration species in 
CRA. Elevated CO2 and NH3 concentrations pose signi�cant 
risks to farmed animals [25,28]. Rice cultivation considered as 
source of pollutant for water bodies because of nutrients and 
pesticide application. Improvement of paddy water in 
important of rice cultivation. Rice mono-cultivation utilize only 
the required N and rest is lost on environment [12]. On other 
hands, rice-aquatic life co-culture trend enhances N use 
e�ciency for plants and reduce its losses because of aquatic life. 
By improving the organic carbon, P, N, and K this so-culture 
enhance soil fertility and production sustainability. Previous 
researches reported that this co-culture reduces the fertilizers 
use up-to 26% as compare to mono-cultured rice farming. 
Moreover, reduced nutrients (N and P) concentration in 
co-culture was reduced up-to 79% than mono-cultured �sh 
farming. Co-culture system minimized the pesticide use up-to 
68% [12,29,30]. 

 Recommended conditions (Figure 1) for CRA are designed 
to support the growth and health of rice (culture period of 
90-120 days) and aquatic organisms. Keeping carbon dioxide 
levels below 10 ppm prevents acidic conditions, while dissolved 
oxygen levels between 5.0-7.5 ppm ensure adequate respiration 
for aquatic life. A water level of 30-90 cm provides optimal 
submergence space for rice and optimal habitat space for 
aquatic organisms with a pH range (neutral to alkaline) from 
6.5 to 9.0 supports nutrient availability and safety for plants and 
animals. Water clarity of 25-30 cm provides su�cient light for 
photosynthesis while maintaining a healthy ecosystem balance, 
and a temperature range of 25-35°C, and ionized ammonia 
promotes optimal growth and development of rice and tropical 
aquatic life [28]. Designs recommendations provided by various 
researches are rice ridge and �sh ditch farming system in China, 
peripheral trench, latticed trenches, Y-shaped trench, diagonal 
trench, peripheral with one central longitudinal trench, 
peripheral with two equidistant transverse trenches and design 
and construction of Indonesian rice + �sh farm with lateral 
pond [19,31,32].

only improve productivity but also enhance the adaptability ratio 
for climate change and upstream dam impacts [41].

 CRA involves bene�cial interactions between organisms to 
improve water use e�ciency. Rice provides shade and lowers 
water temperatures, bene�ting aquatic animals. Animal 
movement bene�ts soil quality and nutrient availability, while 
also controlling pests and reducing the need for pesticides 
[42,43]. However, year-round �ooding can lead to reduced soil 
fertility and other negative changes in soil properties. CRA is an 

e�cient and sustainable way to utilize nutrients. Excess N in 
rice is absorbed by aquatic animals such as �sh, crabs, and 
shrimps, preventing runo� during the rainy season. �e animal 
waste then becomes nutrients for the rice, thus accelerating the 
nutrient cycle. In addition, �sh that consume the remaining N 
from rice �elds can be sold in the market, thereby improving the 
socioeconomic status of rural communities. In Bangladesh, 
CRA is now basic part of green economy and integrated 
management of land, water and aquatic resources [12,42].

[44,45]. �is price premium is attributed to the ecological 
bene�t of �sh consuming weeds and insects, which reduces the 
need for pesticides and herbicides, thereby improving food 
security [33].

 Using the cray�sh in CRA, the cost of synthetic fertilizers 
and chemical pesticides was reduced by 79.5% and 50.0% 
respectively compared with rice monoculture, while the net 
ecosystem economic budget (NB) increased by 26.90-75.60%. 
In addition, the rice-crab co-culture system signi�cantly 
improved NB, and the positive aspects of bigeye crabs and 
juvenile crabs far exceeded that of rice monoculture. Overall, 
the net income of co-culture systems can be 115% higher than 
that of �sh monoculture, demonstrating signi�cant economic 
and ecological bene�ts [12,46].

Limitations and Challenges
�e adoption of CRA is hindered by factors such as technical 
pro�ciency, risks associated with �oods and droughts, and the 
need for integrated management. Lack of technical knowledge, 
�nancial support and poor management are signi�cant 
limitations. Excessive use of chemical fertilizers and pesticides 
a�ects habitats and aquatic animal production. Expanding 
co-culture areas without considering market demand may 
result in reduced product value and price. Challenges include 
environmental contamination, excessive competition between 
organisms, and economic losses due to installation costs and 
predator attacks. �e study also points to the need for better 
training of farmers and incentives to adopt CRA instead of rice 
monoculture.

Conclusions
Rice cultivation relies majorly on chemical fertilizers, especially 
nitrogen fertilizers, to ensure food security. Farming aquatic 
animals alongside rice can bring economic, ecological and 
social advantages. But challenges such as lack of technical 
knowledge and poor management hinder widespread adoption.  
�e review concludes that CRA o�er several advantages over 
monoculture systems and can increase agricultural yields, 
incomes and land/water use. However, its e�ects on water 
quality and greenhouse gas emissions are uncertain and may 
vary depending on climate and site conditions. Co-culture can 
reduce greenhouse gas emissions and improve water quality, but 
may also lead to increased greenhouse gas emissions. 
Addressing vulnerabilities to climate change, such as droughts 
and �oods needs a strong policy roadmap. 

 Modulating the intensity and extent of co-culture is critical 
to maintaining product quality and price while controlling 
eutrophication and feed application at scale. Optimization of 
CRA requires further workshops, technical training and 
problem-solving e�orts. Persistent management and business 
plans, public-private partnerships and technical support are 
critical. Further research is required to understand the impact 
of CRA on GHGs, water quality, and biodiversity. Scienti�c 
investigations should focus on feed quantity and quality, 
climatic e�ects, system optimization and the suitability of 
co-culture under various conditions. �e environmental and 
ecological e�ects of CRA require further research to understand 
its impact. Key issues include studying its impact on the 
ecology, soil and water environment, improving feeding 
methods, and identifying suitable rice varieties to provide 

farmers with technical knowledge and the use of spatially 
accurate measurement techniques to study greenhouse gas 
emissions and climate change are critical. Other developing 
countries are advised to learn from China’s approach to 
overcoming initial investment challenges in rural communities 
through educational activities and supportive policies.
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